Introduction to Fourier optics:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Englewood, Colo.
Roberts
2005
|
Ausgabe: | 3. ed. |
Schlagwörter: | |
Links: | http://www.loc.gov/catdir/toc/ecip051/2004023213.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016167923&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XVIII, 491 S. Ill., graph. Darst. |
ISBN: | 0974707724 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022963580 | ||
003 | DE-604 | ||
005 | 20190820 | ||
007 | t| | ||
008 | 071114s2005 xxuad|| |||| 00||| eng d | ||
010 | |a 2004023213 | ||
020 | |a 0974707724 |9 0-9747077-2-4 | ||
035 | |a (OCoLC)56632414 | ||
035 | |a (DE-599)BVBBV022963580 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-898 |a DE-20 |a DE-29T |a DE-19 |a DE-91 |a DE-384 |a DE-11 |a DE-83 |a DE-92 |a DE-859 |a DE-91G |a DE-703 | ||
050 | 0 | |a QC355 | |
082 | 0 | |a 621.36/01/5152433 | |
084 | |a UH 5000 |0 (DE-625)145647: |2 rvk | ||
084 | |a UH 5400 |0 (DE-625)145660: |2 rvk | ||
084 | |a PHY 366f |2 stub | ||
100 | 1 | |a Goodman, Joseph W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Fourier optics |c Joseph W. Goodman |
246 | 1 | 3 | |a Fourier optics |
250 | |a 3. ed. | ||
264 | 1 | |a Englewood, Colo. |b Roberts |c 2005 | |
300 | |a XVIII, 491 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Buiging (natuurkunde) |2 gtt | |
650 | 4 | |a Fourier, Optique de | |
650 | 7 | |a Fourier-analyse |2 gtt | |
650 | 7 | |a Fourier-transformatie |2 gtt | |
650 | 7 | |a Holografie |2 gtt | |
650 | 7 | |a Optica |2 gtt | |
650 | 7 | |a Óptica |2 larpcal | |
650 | 4 | |a Fourier transform optics | |
650 | 0 | 7 | |a Fourier-Optik |0 (DE-588)4155108-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optik |0 (DE-588)4043650-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Information |0 (DE-588)4026899-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linse |0 (DE-588)4167776-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenoptik |0 (DE-588)4189552-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Holografie |0 (DE-588)4025643-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Streuung |0 (DE-588)4058056-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Licht |0 (DE-588)4035596-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Holografie |0 (DE-588)4025643-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Fourier-Optik |0 (DE-588)4155108-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Optik |0 (DE-588)4043650-0 |D s |
689 | 2 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
689 | 3 | 0 | |a Wellenoptik |0 (DE-588)4189552-6 |D s |
689 | 3 | |8 3\p |5 DE-604 | |
689 | 4 | 0 | |a Licht |0 (DE-588)4035596-2 |D s |
689 | 4 | |8 4\p |5 DE-604 | |
689 | 5 | 0 | |a Information |0 (DE-588)4026899-8 |D s |
689 | 5 | |8 5\p |5 DE-604 | |
689 | 6 | 0 | |a Linse |0 (DE-588)4167776-6 |D s |
689 | 6 | |8 6\p |5 DE-604 | |
689 | 7 | 0 | |a Streuung |0 (DE-588)4058056-8 |D s |
689 | 7 | |8 7\p |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip051/2004023213.html |3 Table of contents | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016167923&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016167923 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0041 PHY 366f 2010 A 2183 0202 PHY 366f 2016 A 2502(3) |
---|---|
DE-BY-TUM_katkey | 1721250 |
DE-BY-TUM_location | LSB 02 |
DE-BY-TUM_media_number | 040090439211 040008260064 |
_version_ | 1821933829052432384 |
adam_text | Titel: Introduction to Fourier optics
Autor: Goodman, Joseph W
Jahr: 2005
Contents
Preface........................................................................vii
1 Introduction.........................................................1
1.1 Optics, Information, and Communication...................................I
1.2 The Book................................................................2
2 Analysis of Two-Dimensional Signals and Systems
2.1 Fourier Analysis in Two Dimensions.......................................4
2.1.1 Definition and Existence Conditions................................4
2.1.2 The Fourier Transform as a Decomposition.........................6
2.1.3 Fourier Transform Theorems......................................7
2.1.4 Separable Functions..............................................9
2.1.5 Functions with Circular Symmetry: Fourier-Bessel Transforms......10
2.1.6 Some Frequently Used Functions and Some Useful Fourier
Transform Pairs.................................................12
2.2 Spatial Frequency and Space-Frequency Localization.......................15
2.3 Linear Systems..........................................................18
2.3.1 Linearity and the Superposition Integral...........................19
2.3.2 Invariant Linear Systems: Transfer Functions......................20
2.4 Two-Dimensional Sampling Theory.......................................22
2.4.1 The Whittaker-Shannon Sampling Theorem........................22
2.4.2 Space-Bandwidth Product........................................26
Contents
3 Foundations of Scalar Diffraction Theory.................................31
3.1 Historical Introduction...................................................31
3.2 From a Vector to a Scalar Theory.........................................35
3.3 Some Mathematical Preliminaries.........................................38
3.3.1 The Helmholtz Equation.........................................38
3.3.2 Green s Theorem................................................39
3.3.3 The Integral Theorem of Helmholtz and Kirchhoff..................39
3.4 The Kirchhoff Formulation of Diffraction by a Planar Screen................42
3.4.1 Application of the Integral Theorem...............................42
3.4.2 The Kirchhoff Boundary Conditions..............................44
3.4.3 The Fresnel-Kirchhoff Diffraction Formula........................45
3.5 The Rayleigh-Sommerfeld Formulation of Diffraction......................46
3.5.1 Choice of Alternative Green s Functions...........................47
3.5.2 The Rayleigh-Sommerfeld Diffraction Formula....................49
3.6 Comparison of the Kirchhoff and Rayleigh-Sommerfeld Theories............50
3.7 Further Discussion of the Huygens-Fresnel Principle........................52
3.8 Generalization to Nonmonochromatic Waves...............................53
3.9 Diffraction at Boundaries................................................54
3.10 The Angular Spectrum of Plane Waves....................................55
3.10.1 The Angular Spectrum and Its Physical Interpretation...............55
3.10.2 Propagation of the Angular Spectrum.............................57
3.10.3 Effects of a Diffracting Aperture on the Angular Spectrum..........59
3.10.4 The Propagation Phenomenon as a Linear Spatial Filter.............60
4 Fresnel and Fraunhofer Diffraction.....................................63
4.1 Background............................................................63
4.1.1 The Intensity of a Wave Field.....................................63
4.1.2 The Huygens-Fresnel Principle in Rectangular Coordinates..........65
4.2 The Fresnel Approximation..............................................66
4.2.1 Positive vs. Negative Phases......................................68
4.2.2 Accuracy of the Fresnel Approximation...........................68
4.2.3 The Fresnel Approximation and the Angular Spectrum..............72
4.2.4 Fresnel Diffraction between Confocal Spherical Surfaces............73
4.3 The Fraunhofer Approximation...........................................74
4.4 Examples of Fraunhofer Diffraction Patterns...............................75
4.4.1 Rectangular Aperture............................................76
4.4.2 Circular Aperture...............................................76
4.4.3 Thin Sinusoidal Amplitude Grating...............................78
4.4.4 Thin Sinusoidal Phase Grating....................................82
4.5 Examples of Fresnel Diffraction Calculations..............................84
4.5.1 Fresnel Diffraction by a Square Aperture..........................84
4.5.2 Fresnel Diffraction by a Sinusoidal Amplitude Grating-Talbot
Images.........................................................88
Contents xiii
5 Wave-Optics Analysis of Coherent Optical Systems........................97
5.1 A Thin Lens as a Phase Transformation....................................97
5.1.1 The Thickness Function..........................................98
5.1.2 The Paraxial Approximation....................................100
5.1.3 The Phase Transformation and Its Physical Meaning...............100
5.2 Fourier Transforming Properties of Lenses................................103
5.2.1 Input Placed against the Lens....................................104
5.2.2 Input Placed in Front of the Lens................................105
5.2.3 Input Placed behind the Lens....................................107
5.2.4 Example of an Optical Fourier Transform.........................108
5.3 Image Formation: Monochromatic Illumination...........................108
5.3.1 The Impulse Response of a Positive Lens.........................109
5.3.2 Eliminating Quadratic Phase Factors: The Lens Law...............Ill
5.3.3 The Relation between Object and Image..........................114
5.4 Analysis of Complex Coherent Optical Systems...........................115
5.4.1 An Operator Notation..........................................115
5.4.2 Application of the Operator Approach to Some Optical Systems___118
6 Frequency Analysis of Optical Imaging Systems...........................127
6.1 Generalized Treatment of Imaging Systems...............................128
6.1.1 A Generalized Model...........................................128
6.1.2 Effects of Diffraction on the Image..............................129
6.1.3 Polychromatic Illumination: The Coherent and Incoherent Cases___131
6.2 Frequency Response for Diffraction-Limited Coherent Imaging.............135
6.2.1 The Amplitude Transfer Function................................136
6.2.2 Examples of Amplitude Transfer Functions.......................137
6.3 Frequency Response for Diffraction-Limited Incoherent Imaging...........138
6.3.1 The Optical Transfer Function...................................138
6.3.2 General Properties of the OTF...................................140
6.3.3 The OTF of an Aberration-Free System..........................141
6.3.4 Examples of Diffraction-Limited OTFs...........................143
6.4 Aberrations and Their Effects on Frequency Response.....................145
6.4.1 The Generalized Pupil Function.................................145
6.4.2 Effects of Aberrations on the Amplitude Transfer Function.........147
6.4.3 Effects of Aberrations on the OTF...............................148
6.4.4 Example of a Simple Aberration: A Focusing Error................149
6.4.5 Apodi/.ation and Its Effects on Frequency Response...............152
6.5 Comparison of Coherent and Incoherent Imaging..........................154
6.5.1 Frequency Spectrum of the Image Intensity___...................156
6.5.2 Two-Point Resolution..........................................158
6.5.3 Other Effects..................................................160
Contents
6.6 Resolution beyond the Classical Diffraction Limit.........................162
6.6.1 Underlying Mathematical Fundamentals..........................162
6.6.2 Intuitive Explanation of Bandwidth Extrapolation.................163
6.6.3 An Extrapolation Method Based on the Sampling Theorem.........164
6.6.4 An Iterative Extrapolation Method...............................166
6.6.5 Practical Limitations...........................................167
7 Wavefront Modulation...............................................173
7.1 Wavefront Modulation with Photographic Film............................174
7.1.1 The Physical Processes of Exposure, Development, and Fixing.....174
7.1.2 Definition of Terms............................................175
7.1.3 Film in an Incoherent Optical System............................178
7.1.4 Film in a Coherent Optical System...............................179
7.1.5 The Modulation Transfer Function...............................182
7.1.6 Bleaching of Photographic Emulsions............................185
7.2 Spatial Light Modulators................................................186
7.2.1 Properties of Liquid Crystals....................................187
7.2.2 Spatial Light Modulators Based on Liquid Crystals................195
7.2.3 Magneto-Optic Spatial Light Modulators.........................199
7.2.4 Deformable Mirror Spatial Light Modulators.....................202
7.2.5 Multiple Quantum Well Spatial Light Modulators.................204
7.2.6 Acousto-Optic Spatial Light Modulators..........................208
7.3 Diffractive Optical Elements............................................212
7.3.1 Binary Optics..................................................212
7.3.2 Other Types of Diffractive Optics................................216
7.3.3 A Word of Caution.............................................216
Analog Optical Information Processing.................................219
8.1 Historical Background..................................................220
8.1.1 The Abbe-Porter Experiments...................................220
8.1.2 The Zernike Phase-Contrast Microscope..........................222
8.1.3 Improvement of Photographs: Marechal..........................224
8.1.4 The Emergence of a Communications Viewpoint..................226
8.1.5 Application of Coherent Optics to More General Data Processing ... 226
8.2 Incoherent Image Processing Systems....................................226
8.2.1 Systems Based on Geometrical Optics............................227
8.2.2 Systems That Incorporate the Effects of Diffraction................232
8.3 Coherent Optical Information Processing Systems.........................234
8.3.1 Coherent System Architectures..................................234
8.3.2 Constraints on Filter Realization.................................237
Contents xv
8.4 The VanderLugt Filter..................................................239
8.4.1 Synthesis of the Frequency-Plane Mask..........................239
8.4.2 Processing the Input Data.......................................242
8.4.3 Advantages of the VanderLugt Filter.............................244
8.5 The Joint Transform Correlator..........................................245
8.6 Application to Character Recognition....................................248
8.6.1 The Matched Filter.............................................248
8.6.2 A Character-Recognition Problem...............................249
8.6.3 Optical Synthesis of a Character-Recognition Machine.............251
8.6.4 Sensitivity to Scale Size and Rotation............................252
8.7 Optical Approaches to Invariant Pattern Recognition.......................253
8.7.1 Mellin Correlators..............................................254
8.7.2 Circular Harmonic Correlation..................................256
8.7.3 Synthetic Discriminant Functions................................257
8.8 Image Restoration......................................................259
8.8.1 The Inverse Filter..............................................259
8.8.2 The Wiener Filter, or the Least-Mean-Square-Error Filter..........261
8.8.3 Filter Realization...............................................262
8.9 Processing Synthetic-Aperture Radar (SAR) Data.........................265
8.9.1 Formation of the Synthetic Aperture.............................266
8.9.2 The Collected Data and the Recording Format....................267
8.9.3 Focal Properties of the Film Transparency........................269
8.9.4 Forming a Two-Dimensional Image..............................273
8.9.5 The Tilted Plane Processor......................................274
8.10 Acousto-Optic Signal Processing Systems................................277
8.10.1 Bragg Cell Spectrum Analyzer..................................278
8.10.2 Space-Integrating Correlator....................................280
8.10.3 Time-Integrating Correlator.....................................281
8.10.4 Other Acousto-Optic Signal Processing Architectures..............283
8.11 Discrete Analog Optical Processors......................................284
8.11.1 Discrete Representation of Signals and Systems...................284
8.11.2 A Serial Matrix-Vector Multiplier................................285
8.11.3 A Parallel Incoherent Matrix-Vector Multiplier....................286
8.11.4 An Outer Product Processor.....................................288
8.11.5 Other Discrete Processing Architectures..........................290
8.11.6 Methods for Handling Bipolar and Complex Data.................290
9 Holograph).......................................................297
9.1 Historical Introduction..................................................297
9.2 The Wavefront Reconstruction Problem..................................298
9.2.1 Recording Amplitude and Phase.................................298
9.2.2 The Recording Medium.........................................299
Contents
9.2.3 Reconstruction of the Original Wavefront.........................3(X)
9.2.4 Linearity of the Holographic Process.............................301
9.2.5 Image Formation by Holography................................302
9.3 The Gabor Hologram...................................................303
9.3.1 Origin of the Reference Wave...................................304
9.3.2 The Twin Images...............................................305
9.3.3 Limitations of the Gabor Hologram..............................306
9.4 The Leith-Upatnieks Hologram..........................................306
9.4.1 Recording the Hologram........................................307
9.4.2 Obtaining the Reconstructed Images.............................308
9.4.3 The Minimum Reference Angle.................................310
9.4.4 Holography of Three-Dimensional Scenes........................311
9.4.5 Practical Problems in Holography................................314
9.5 Image Locations and Magnification......................................316
9.5.1 Image Locations...............................................316
9.5.2 Axial and Transverse Magnifications.............................319
9.5.3 An Example..................................................320
9.6 Some Different Types of Holograms.....................................321
9.6.1 Fresnel, Fraunhofer, Image, and Fourier Holograms...............322
9.6.2 Transmission and Reflection Holograms..........................323
9.6.3 Holographic Stereograms.......................................325
9.6.4 Rainbow Holograms............................................326
9.6.5 Multiplex Holograms...........................................329
9.6.6 Embossed Holograms..........................................331
9.7 Thick Holograms......................................................332
9.7.1 Recording a Volume Holographic Grating........................332
9.7.2 Reconstructing Wavefronts from a Volume Grating................334
9.7.3 Fringe Orientations for More Complex Recording Geometries......335
9.7.4 Gratings of Finite Size..........................................337
9.7.5 Diffraction Efficiency-Coupled Mode Theory...................339
9.8 Recording Materials....................................................350
9.8.1 Silver Halide Emulsions........................................350
9.8.2 Photopolymer Films............................................351
9.8.3 Dichromated Gelatin...........................................352
9.8.4 Photorefractive Materials.......................................352
9.9 Computer-Generated Holograms.........................................355
9.9.1 The Sampling Problem.........................................356
9.9.2 The Computational Problem....................................359
9.9.3 The Representational Problem...................................359
9.10 Degradations of Holographic Images.....................................367
9.10.1 Effects of Film MTF...........................................368
9.10.2 Effects of Film Nonlinearities...................................371
9J0.3 Effects of Film-Grain Noise.....................................372
9.10.4 Speckle Noise.................................................373
Contents xvii
9.11 Holography with Spatially Incoherent Light...............................374
9.12 Applications of Holography.............................................377
9.12.1 Microscopy and High-Resolution Volume Imagery................377
9.12.2 Interferometry.................................................378
9.12.3 Imaging through Distorting Media...............................384
9.12.4 Holographic Data Storage.......................................388
9.12.5 Holographic Weights for Artificial Neural Networks...............389
9.12.6 Other Applications.............................................393
10 Fourier Optics in Optical Communications.............................399
10.1 Introduction............................................................399
10.2 Fiber Bragg Gratings....................................................400
10.2.1 Introduction to Optical Fibers.....................................400
10.2.2 Recording Gratings in Optical Fibers..............................403
10.2.3 Effects of an FBG on Light Propagating in the Fiber................404
10.2.4 Applications of FBGs............................................407
10.2.5 Gratings Operated in Transmission................................409
10.3 Ultrashort Pulse Shaping and Processing...................................410
10.3.1 Mapping of Temporal Frequencies to Spatial Frequencies...........410
10.3.2 Pulse Shaping System............................................412
10.3.3 Applications of Spectral Pulse Shaping............................413
10.4 Spectral Holography.....................................................415
10.4.1 Recording the Hologram.........................................415
10.4.2 Reconstructing the Signals.......................................417
10.4.3 Effects of Delay between the Reference Pulse and the
Signal Waveform................................................420
10.5 Arrayed Waveguide Gratings.............................................420
10.5.1 Component Parts of an Arrayed Waveguide Grating.................421
10.5.2 Applications of AWGs...........................................427
A Delta Functions and Fourier Transform Theorems........................433
A. 1 Delta Functions..........................................................433
A.2 Derivation of Fourier Transform Theorems.................................435
B Introduction to Paraxial Geometrical Optics.............................441
B. 1 The Domain of Geometrical Optics........................................ 441
B.2 Refraction, Snell s Law, and the Paraxial Approximation.....................443
B.3 The Ray-Transfer Matrix..................................................444
B.4 Conjugate Planes, Focal Planes, and Principal Planes...................,___447
B.5 Entrance and Exit Pupils..................................................451
xviii Contents
C Polarization and Jones Matrices.......................................455
C. I Definition of the Jones Matrix.............................................455
C.2 Examples of Simple Polarization Transformations...........................457
C.3 Reflective Polarization Devices............................................459
D The Crating Equation..............................................463
Bibliography..................................................................465
Index.........................................................................481
|
any_adam_object | 1 |
author | Goodman, Joseph W. |
author_facet | Goodman, Joseph W. |
author_role | aut |
author_sort | Goodman, Joseph W. |
author_variant | j w g jw jwg |
building | Verbundindex |
bvnumber | BV022963580 |
callnumber-first | Q - Science |
callnumber-label | QC355 |
callnumber-raw | QC355 |
callnumber-search | QC355 |
callnumber-sort | QC 3355 |
callnumber-subject | QC - Physics |
classification_rvk | UH 5000 UH 5400 |
classification_tum | PHY 366f |
ctrlnum | (OCoLC)56632414 (DE-599)BVBBV022963580 |
dewey-full | 621.36/01/5152433 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36/01/5152433 |
dewey-search | 621.36/01/5152433 |
dewey-sort | 3621.36 11 75152433 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03574nam a2200889 c 4500</leader><controlfield tag="001">BV022963580</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190820 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">071114s2005 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004023213</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0974707724</subfield><subfield code="9">0-9747077-2-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56632414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022963580</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36/01/5152433</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5000</subfield><subfield code="0">(DE-625)145647:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5400</subfield><subfield code="0">(DE-625)145660:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 366f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Goodman, Joseph W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Fourier optics</subfield><subfield code="c">Joseph W. Goodman</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Fourier optics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Englewood, Colo.</subfield><subfield code="b">Roberts</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 491 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Buiging (natuurkunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier, Optique de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier-transformatie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Holografie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Óptica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transform optics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Optik</subfield><subfield code="0">(DE-588)4155108-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Information</subfield><subfield code="0">(DE-588)4026899-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linse</subfield><subfield code="0">(DE-588)4167776-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenoptik</subfield><subfield code="0">(DE-588)4189552-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holografie</subfield><subfield code="0">(DE-588)4025643-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streuung</subfield><subfield code="0">(DE-588)4058056-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Licht</subfield><subfield code="0">(DE-588)4035596-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holografie</subfield><subfield code="0">(DE-588)4025643-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fourier-Optik</subfield><subfield code="0">(DE-588)4155108-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Wellenoptik</subfield><subfield code="0">(DE-588)4189552-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Licht</subfield><subfield code="0">(DE-588)4035596-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Information</subfield><subfield code="0">(DE-588)4026899-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Linse</subfield><subfield code="0">(DE-588)4167776-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Streuung</subfield><subfield code="0">(DE-588)4058056-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip051/2004023213.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016167923&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016167923</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV022963580 |
illustrated | Illustrated |
indexdate | 2024-12-20T13:06:20Z |
institution | BVB |
isbn | 0974707724 |
language | English |
lccn | 2004023213 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016167923 |
oclc_num | 56632414 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-20 DE-29T DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-384 DE-11 DE-83 DE-92 DE-859 DE-91G DE-BY-TUM DE-703 |
owner_facet | DE-898 DE-BY-UBR DE-20 DE-29T DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-384 DE-11 DE-83 DE-92 DE-859 DE-91G DE-BY-TUM DE-703 |
physical | XVIII, 491 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Roberts |
record_format | marc |
spellingShingle | Goodman, Joseph W. Introduction to Fourier optics Buiging (natuurkunde) gtt Fourier, Optique de Fourier-analyse gtt Fourier-transformatie gtt Holografie gtt Optica gtt Óptica larpcal Fourier transform optics Fourier-Optik (DE-588)4155108-4 gnd Optik (DE-588)4043650-0 gnd Information (DE-588)4026899-8 gnd Linse (DE-588)4167776-6 gnd Wellenoptik (DE-588)4189552-6 gnd Holografie (DE-588)4025643-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd Streuung (DE-588)4058056-8 gnd Licht (DE-588)4035596-2 gnd |
subject_GND | (DE-588)4155108-4 (DE-588)4043650-0 (DE-588)4026899-8 (DE-588)4167776-6 (DE-588)4189552-6 (DE-588)4025643-1 (DE-588)4023453-8 (DE-588)4058056-8 (DE-588)4035596-2 (DE-588)4151278-9 |
title | Introduction to Fourier optics |
title_alt | Fourier optics |
title_auth | Introduction to Fourier optics |
title_exact_search | Introduction to Fourier optics |
title_full | Introduction to Fourier optics Joseph W. Goodman |
title_fullStr | Introduction to Fourier optics Joseph W. Goodman |
title_full_unstemmed | Introduction to Fourier optics Joseph W. Goodman |
title_short | Introduction to Fourier optics |
title_sort | introduction to fourier optics |
topic | Buiging (natuurkunde) gtt Fourier, Optique de Fourier-analyse gtt Fourier-transformatie gtt Holografie gtt Optica gtt Óptica larpcal Fourier transform optics Fourier-Optik (DE-588)4155108-4 gnd Optik (DE-588)4043650-0 gnd Information (DE-588)4026899-8 gnd Linse (DE-588)4167776-6 gnd Wellenoptik (DE-588)4189552-6 gnd Holografie (DE-588)4025643-1 gnd Harmonische Analyse (DE-588)4023453-8 gnd Streuung (DE-588)4058056-8 gnd Licht (DE-588)4035596-2 gnd |
topic_facet | Buiging (natuurkunde) Fourier, Optique de Fourier-analyse Fourier-transformatie Holografie Optica Óptica Fourier transform optics Fourier-Optik Optik Information Linse Wellenoptik Harmonische Analyse Streuung Licht Einführung |
url | http://www.loc.gov/catdir/toc/ecip051/2004023213.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016167923&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT goodmanjosephw introductiontofourieroptics AT goodmanjosephw fourieroptics |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Handapparate (nicht verfügbar)
Signatur: |
0041 PHY 366f 2010 A 2183 Lageplan |
---|---|
Exemplar 1 | Dauerhaft ausgeliehen Ausgeliehen – Rückgabe bis: 31.12.9999 |
Teilbibliothek Physik
Signatur: |
0202 PHY 366f 2016 A 2502(3) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |