Quantum mechanics: with 92 exercises with solutions
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Ausgabe: | Corr. 2. print. |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015693108&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXII, 511 S. Ill., graph. Darst. 1 CD-Rom (12 cm) |
ISBN: | 3540277064 9783540277064 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV022485796 | ||
003 | DE-604 | ||
005 | 20150626 | ||
007 | t| | ||
008 | 070628s2005 gw ad|| |||| 00||| eng d | ||
020 | |a 3540277064 |9 3-540-27706-4 | ||
020 | |a 9783540277064 |9 978-3-540-27706-4 | ||
035 | |a (OCoLC)634405632 | ||
035 | |a (DE-599)BVBBV022485796 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-703 |a DE-91G |a DE-355 |a DE-526 |a DE-19 |a DE-29T | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a PHY 020f |2 stub | ||
100 | 1 | |a Basdevant, Jean-Louis |d 1939- |e Verfasser |0 (DE-588)133559130 |4 aut | |
245 | 1 | 0 | |a Quantum mechanics |b with 92 exercises with solutions |c Jean-Louis Basdevant ; Jean Dalibard |
250 | |a Corr. 2. print. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a XXII, 511 S. |b Ill., graph. Darst. |e 1 CD-Rom (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dalibard, Jean |d 1958- |e Verfasser |0 (DE-588)121510824 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015693108&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015693108 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0049 PHY 020f 2007 A 10216 0202 PHY 020f 2002 A 212(1,2005) 0204 PHY 020f 2002 A 212(1,2005) 0303 PHY 020f 2009 L 379 |
---|---|
DE-BY-TUM_katkey | 1614996 |
DE-BY-TUM_location | LSB 02 03 |
DE-BY-TUM_media_number | 040020764763 040020774812 040020764774 040071313265 040071313254 040071313276 040071313298 040071313301 040071313312 040071313323 040071313334 040071313345 040071313356 040080113795 040080113762 040080113773 040080113944 040080113751 040080113740 040080113739 040080113808 040080113819 040080113842 040080113784 040080113820 040080113886 040080113864 040080113875 040080113933 040080113853 040080113897 040080113900 040080113911 040080113922 040080113831 040071313287 |
_version_ | 1821932736424706048 |
adam_text | Contents
Physical Constants
.........................................
XXIII
1.
Quantum Phenomena
..................................... 1
1.1
The
Franck
and Hertz Experiment
........................ 3
1.2
Interference of Matter Waves
............................. 5
1.2.1
The Young Double-Slit Experiment
................. 6
1.2.2
Interference of Atoms in a Double-Slit Experiment
.... 7
1.2.3
Probabilistic Aspect of Quantum Interference
........ 8
1.3
The Experiment of Davisson and
Germer
.................. 10
1.3.1
Diffraction of X Rays by a Crystal
.................. 10
1.3.2
Electron Diffraction
.............................. 12
1.4
Summary of a Few Important Ideas
....................... 15
Further Reading
............................................ 15
Exercises
.................................................. 16
2.
The Wave Function and the
Schrödinger
Equation
........ 17
2.1
The Wave Function
..................................... 18
2.1.1
Description of the State of a Particle
................ 18
2.1.2
Position Measurement of the Particle
............... 19
2.2
Interference and the Superposition Principle
............... 20
2.2.1 De Broglie
Waves
................................ 20
2.2.2
The Superposition Principle
....................... 21
2.2.3
The Wave Equation in Vacuum
.................... 22
2.3
Free Wave Packets
...................................... 24
2.3.1
Definition of a Wave Packet
....................... 24
2.3.2
Fourier Transformation
............................ 24
2.3.3
Structure of the Wave Packet
...................... 25
2.3.4
Propagation of a Wave Packet: the Group Velocity
... 26
2.3.5
Propagation of a Wave Packet:
Average Position and Spreading
.................... 27
2.4
Momentum Measurements and Uncertainty Relations
....... 28
2.4.1
The Momentum Probability Distribution
............ 29
2.4.2 Heisenberg
Uncertainty Relations
................... 30
2.5
The
Schrödinger
Equation
............................... 31
XII Contents
2.5.1
Equation
of
Motion
............................... 32
2.5.2
Particle in a Potential: Uncertainty Relations
........ 32
2.5.3
Stability of Matter
............................... 33
2.6
Momentum Measurement in a Time-of-Flight Experiment
... 34
Further Reading
............................................ 36
Exercises
.................................................. 37
3.
Physical Quantities and Measurements
................... 39
3.1
Measurements in Quantum Mechanics
..................... 40
3.1.1
The Measurement Procedure
....................... 40
3.1.2
Experimental Facts
............................... 41
3.1.3
Reinterpretation of Position
and Momentum Measurements
..................... 41
3.2
Physical Quantities and
Observables
...................... 42
3.2.1
Expectation Value of a Physical Quantity
........... 42
3.2.2
Position and Momentum
Observables
............... 43
3.2.3
Other
Observables:
the Correspondence Principle
..... 44
3.2.4
Commutation of
Observables
...................... 44
3.3
Possible Results of a Measurement
........................ 45
3.3.1
Eigenfunctions and Eigenvalues of an Observable
..... 45
3.3.2
Results of a Measurement
and Reduction of the Wave Packet
.................. 46
3.3.3
Individual Versus Multiple Measurements
........... 47
3.3.4
Relation to
Heisenberg
Uncertainty Relations
........ 47
3.3.5
Measurement and Coherence of Quantum Mechanics
.. 48
3.4
Energy Eigenfunctions and Stationary States
............... 48
3.4.1
Isolated Systems: Stationary States
................. 49
3.4.2
Energy Eigenstates and Time Evolution
............. 50
3.5
The Probability Current
................................. 50
3.6
Crossing Potential Barriers
.............................. 52
3.6.1
The Eigenstates of the Hamiltonian
................. 52
3.6.2
Boundary Conditions at the Discontinuities
of the Potential
.................................. 53
3.6.3
Reflection and Transmission on a Potential Step
...... 54
3.6.4
Potential Barrier and Tunnel Effect
................. 56
3.7
Summary of Chapters
2
and
3............................ 57
Further Reading
............................................ 59
Exercises
.................................................. 60
4.
Quantization of Energy in Simple Systems
................ 63
4.1
Bound States and Scattering States
....................... 63
4.1.1
Stationary States of the
Schrödinger
Equation
....... 64
4.1.2
Bound States
.................................... 64
4.1.3
Scattering States
................................. 65
4.2
The One Dimensional Harmonic Oscillator
................. 66
Contents XIII
4.2.1 Definition
and Classical Motion
.................... 66
4.2.2
The Quantum Harmonic Oscillator
................. 67
4.2.3
Examples
....................................... 69
4.3
Square-Well Potentials
.................................. 70
4.3.1
Relevance of Square Potentials
..................... 70
4.3.2
Bound States in a One-Dimensional
Square-Well Potential
............................. 71
4.3.3
Infinite Square Well
.............................. 73
4.3.4
Particle in a Three-Dimensional Box
................ 74
4.4
Periodic Boundary Conditions
........................... 75
4.4.1
A One-Dimensional Example
...................... 75
4.4.2
Extension to Three Dimensions
.................... 77
4.4.3
Introduction of Phase Space
....................... 78
4.5
The Double Well Problem and the Ammonia Molecule
...... 78
4.5.1
Model of the NH3 Molecule
........................ 79
4.5.2
Wave Functions
.................................. 79
4.5.3
Energy Levels
.................................... 81
4.5.4
The Tunnel Effect and the Inversion Phenomenon
.... 82
4.6
Other Applications of the Double Well
.................... 84
Further Reading
............................................ 86
Exercises
.................................................. 87
5.
Principles of Quantum Mechanics
......................... 89
5.1
Hilbert Space
.......................................... 90
5.1.1
The State Vector
................................. 90
5.1.2
Scalar Products and the Dirac Notations
............ 90
5.1.3
Examples
....................................... 91
5.1.4
Bras and
Kets,
Brackets
........................... 92
5.2
Operators in Hilbert Space
.............................. 92
5.2.1
Matrix Elements of an Operator
.................... 92
5.2.2
Adjoint Operators and Hermitian Operators
......... 93
5.2.3
Eigenvectors and Eigenvalues
...................... 94
5.2.4
Summary: Syntax Rules in Dirac s Formalism
........ 95
5.3
The Spectral Theorem
.................................. 95
5.3.1
ffilbertian Bases
................................. 95
5.3.2
Projectors and Closure Relation
.................... 96
5.3.3
The Spectral Decomposition of an Operator
......... 96
5.3.4
Matrix Representations
........................... 97
5.4
Measurement of Physical Quantities
...................... 99
5.5
The Principles of Quantum Mechanics
....................100
5.6
Structure of Hilbert Space
...............................104
5.6.1
Tensor Products of Spaces
.........................104
5.6.2
The Appropriate Hilbert Space
.....................105
5.6.3
Properties of Tensor Products
......................105
5.6.4
Operators in a Tensor Product Space
...............106
XIV Contents
5.6.5
Simple
Examples
.................................106
5.7
Reversible Evolution and the Measurement Process
.........107
Further Reading
............................................110
Exercises
..................................................
Ill
6.
Two-State Systems, Principle of the
Maser...............115
6.1
Two-Dimensional Hubert Space
..........................115
6.2
A Familiar Example: the Polarization of Light
.............116
6.2.1
Polarization States of a Photon
.................... 116
6.2.2
Measurement of Photon Polarizations
............... 118
6.2.3
Successive Measurements and Quantum Logic
...... 119
6.3
The Model of the Ammonia Molecule
..................... 120
6.3.1
Restriction to a Two-Dimensional Hubert Space
......120
6.3.2
The Basis
{ фѕ), Џа)}
............................
121
6.3.3
The Basis {|^r>, |^l»
............................
123
6.4
The Ammonia Molecule in an Electric Field
...............123
6.4.1
The Coupling of NH3 to an Electric Field
...........124
6.4.2
Energy Levels in a Fixed Electric Field
..............125
6.4.3
Force Exerted on the Molecule
by an Inhomogeneous Field
........................127
6.5
Oscillating Fields and Stimulated Emission
................129
6.6
Principle and Applications of
Masers......................131
6.6.1
Amplifier
........................................131
6.6.2
Oscillator
.......................................132
6.6.3
Atomic Clocks
...................................132
Further Reading
............................................132
Exercises
..................................................133
7.
Commutation of
Observables
.............................135
7.1
Commutation Relations
.................................136
7.2
Uncertainty Relations
...................................137
7.3
Ehrenfest s Theorem
....................................138
7.3.1
Evolution of the Expectation Value of an Observable.
. 138
7.3.2
Particle in a Potential V{r)
........................139
7.3.3
Constants of Motion
..............................140
7.4
Commuting
Observables
.................................142
7.4.1
Existence of a Common
Eigenbasis
for Commuting
Observables
.......................142
7.4.2
Complete Set of Commuting
Observables (CSCO)
___142
7.4.3
Completely Prepared Quantum State
...............143
7.4.4
Symmetries of the Hamiltonian
and Search of Its Eigenstates
......................145
7.5
Algebraic Solution of the Harmonic-Oscillator Problem
......148
7.5.1
Reduced Variables
................................148
7.5.2
Annihilation and Creation Operators
α
and
ał
.......148
Contents
XV
7.5.3
Eigenvalues of the Number Operator
Ń
.............149
7.5.4
Eigenstates
......................................150
Further Reading
............................................151
Exercises
..................................................152
8.
The Stern-Gerlach Experiment
...........................157
8.1
Principle of the Experiment
..............................157
8.1.1
Classical Analysis
................................157
8.1.2
Experimental Results
.............................159
8.2
The Quantum Description of the Problem
.................161
8.3
The
Observables
ßx
and
μυ..............................
163
8.4
Discussion
.............................................165
8.4.1
Incompatibility of Measurements Along Different Axes
165
8.4.2
Classical Versus Quantum Analysis
................. 166
8.4.3
Measurement Along an Arbitrary Axis
.............. 167
8.5
Complete Description of the Atom
........................ 168
8.5.1
Hubert Space
....................................168
8.5.2
Representation of States and
Observables
............169
8.5.3
Energy of the Atom in a Magnetic Field
.............170
8.6
Evolution of the Atom in a Magnetic Field
................170
8.6.1 Schrödinger
Equation
.............................170
8.6.2
Evolution in a Uniform Magnetic Field
..............171
8.6.3
Explanation of the Stern-Gerlach Experiment
........173
8.7
Conclusion
............................................175
Further Reading
............................................175
Exercises
..................................................176
9.
Approximation Methods
..................................177
9.1
Perturbation Theory
....................................177
9.1.1
Definition of the Problem
..........................177
9.1.2
Power Expansion of Energies and Eigenstates
........178
9.1.3
First-Order Perturbation in the
Nondegenerate
Case
.. 179
9.1.4
First-Order Perturbation in the Degenerate Case
.....179
9.1.5
First-Order Perturbation to the Eigenstates
..........180
9.1.6
Second-Order Perturbation to the Energy Levels
.....181
9.1.7
Examples
.......................................181
9.1.8
Remarks on the Convergence of Perturbation Theory
. 182
9.2
The Variational Method
.................................183
9.2.1
The Ground State
................................183
9.2.2
Other Levels
.....................................184
9.2.3
Examples of Applications of the Variational Method
.. 185
Exercises
..................................................187
XVI Contents
10.
Angular
Momentum
......................................189
10.1
Orbital Angular
Momentum and the Commutation Relations
190
10.2
Eigenvalues of Angular Momentum
.......................190
10.2.1
The
Observables
J2
and Jz and the Basis States j, m)
191
10.2.2
The Operators J±
................................192
10.2.3
Action of J± on the States j,m)
...................192
10.2.4
Quantization of
j
and
m
..........................193
10.2.5
Measurement of Jx and Jy
.........................195
10.3
Orbital Angular Momentum
.............................196
10.3.1
The Quantum Numbers
m
and
і
are Integers
........196
10.3.2
Spherical Coordinates
.............................197
10.3.3
Eigenfunctions of L2 and Lz: the Spherical Harmonics
198
10.3.4
Examples of Spherical Harmonics
...................199
10.3.5
Example: Rotational Energy of a Diatomic Molecule
.. 200
10.4
Angular Momentum and Magnetic Moment
................201
10.4.1
Orbital Angular Momentum and Magnetic Moment
... 202
10.4.2
Generalization to Other Angular Momenta
..........203
10.4.3
What Should we Think
about Half-Integer Values of
j
and
m
?..............204
Further Reading
............................................204
Exercises
..................................................205
11.
Initial Description of Atoms
..............................207
11.1
The Two-Body Problem; Relative Motion
.................208
11.2
Motion in a Central Potential
............................210
11.2.1
Spherical Coordinates
.............................210
11.2.2
Eigenfunctions Common to ff
,
Ì?
and Lz
...........211
11.3
The Hydrogen Atom
....................................215
11.3.1
Orders of Magnitude:
Appropriate Units in Atomic Physics
...............215
11.3.2
The Dimensionless Radial Equation
.................216
11.3.3
Spectrum of Hydrogen
............................219
11.3.4
Stationary States of the Hydrogen Atom
............220
11.3.5
Dimensions and Orders of Magnitude
...............221
11.3.6
Time Evolution of States of Low Energies
...........223
11.4
Hydrogen-Like Atoms
...................................224
11.5
Muonic Atoms
.........................................224
11.6
Spectra of Alkali Atoms
.................................226
Further Reading
............................................227
Exercises
..................................................228
Contents XVII
12.
Spin
1/2
and Magnetic Resonance
........................231
12.1
The Hubert Space of Spin
1/2 ...........................232
12.1.1
Spin
Observables
.................................233
12.1.2
Representation in a Particular Basis
................233
12.1.3
Matrix Representation
............................234
12.1.4
Arbitrary Spin State
..............................234
12.2
Complete Description of a Spin-1/2 Particle
...............235
12.2.1
Hubert Space
....................................235
12.2.2
Representation of States and
Observables
............235
12.3
Spin Magnetic Moment
.................................236
12.3.1
The Stern-Gerlach Experiment
.....................236
12.3.2
Anomalous
Zeeman
Effect
.........................237
12.3.3
Magnetic Moment of Elementary Particles
...........237
12.4
Uncorrelated Space and Spin Variables
....................238
12.5
Magnetic Resonance
....................................239
12.5.1
Larmor Precession in a Fixed Magnetic Field Bq
..... 239
12.5.2
Superposition of a Fixed Field and a Rotating Field
.. 240
12.5.3
Rabi s Experiment
................................ 242
12.
Ъ
A Applications of Magnetic Resonance
................ 244
12.5.5
Rotation of a Spin
1/2
Particle by
2тг
............... 245
Further Reading
............................................ 246
Exercises
.................................................. 247
13.
Addition of Angular Momenta,
Fine and Hyperfine Structure of Atomic Spectra
.........249
13.1
Addition of Angular Momenta
...........................249
13.1.1
The Total-Angular Momentum Operator
............249
13.1.2
Factorized and Coupled Bases
......................250
13.1.3
A Simple Case: the Addition of Two Spins of
1/2.....251
13.1.4
Addition of Two Arbitrary Angular Momenta
........254
13.1.5
One-Electron Atoms,
Spectroscopie
Notations
........258
13.2
Fine Structure of
Monovalent
Atoms
......................258
13.3
Hyperfine Structure; the
21
cm Line of Hydrogen
...........261
13.3.1
Interaction Energy
...............................261
13.3.2
Perturbation Theory
..............................262
13.3.3
Diagonalization of Hi
.............................263
13.3.4
The Effect of an External Magnetic Field
............265
13.3.5
The
21
cm Line in Astrophysics
....................265
Further Reading
............................................268
Exercises
..................................................269
XVIII
Contents
14.
Entangled States, EPR Paradox and Bell s Inequality
.....273
Written in collaboration with Philippe Grangier
14.1
The EPR Paradox and Bell s Inequality
...................274
14.1.1
God Does not Play Dice
.........................274
14.1.2
The EPR Argument
..............................275
14.1.3
Bell s Inequality
..................................278
14.1.4
Experimental Tests
...............................281
14.2
Quantum Cryptography
.................................282
14.2.1
The Communication Between Alice and Bob
.........282
14.2.2
The Quantum Noncloning Theorem
.................285
14.2.3
Present Experimental Setups
......................286
14.3
The Quantum Computer
................................287
14.3.1
The Quantum Bits, or Q-Bits
....................287
14.3.2
The Algorithm of Peter Shor
.......................288
14.3.3
Principle of a Quantum Computer
..................289
14.3.4
Decoherence
.....................................290
Further Reading
............................................290
Exercises
..................................................291
15.
The Lagrangian and Hamiltonian Formalisms,
Lorentz
Force in Quantum Mechanics
.....................293
15.1
Lagrangian Formalism and the Least-Action Principle
.......294
15.1.1
Least Action Principle
............................294
15.1.2 Lagrange
Equations
..............................295
15.1.3
Energy
..........................................297
15.2
Canonical Formalism of Hamilton
........................297
15.2.1
Conjugate Momenta
..............................297
15.2.2
Canonical Equations
..............................298
15.2.3
Poisson
Brackets
.................................299
15.3
Analytical Mechanics and Quantum Mechanics
.............300
15.4
Classical Charged Particles in an Electromagnetic Field
.....301
15.5
Lorentz
Force in Quantum Mechanics
.....................302
15.5.1
Hamiltonian
.....................................302
15.5.2
Gauge
Invariance
.................................303
15.5.3
The Hydrogen Atom Without Spin
in a Uniform Magnetic Field
.......................304
15.5.4
Spin-1/2 Particle in an Electromagnetic Field
........305
Further Reading
............................................305
Exercises
..................................................305
16.
Identical Particles and the
Pauli
Principle
................309
16.1
Indistinguishability of Two Identical Particles
..............310
16.1.1
Identical Particles in Classical Physics
..............310
16.1.2
The Quantum Problem
...........................310
16.2
Two-Particle Systems; the Exchange Operator
.............312
Contents XIX
16.2.1
The Hilbert Space for the Two Particle System
.......312
16.2.2
The Exchange Operator
Between Two Identical Particles
....................312
16.2.3
Symmetry of the States
...........................313
16.3
The
Pauli
Principle
.....................................314
16.3.1
The Case of Two Particles
......................... 314
16.3.2
Independent
Fermions
and Exclusion Principle
....... 315
16.3.3
The Case of
N
Identical Particles
.................. 316
16.3.4
Time Evolution
.................................. 317
16.4
Physical Consequences of the
Pauli
Principle
............... 317
16.4.1
Exchange Force Between Two
Fermions
.............318
16.4.2
The Ground State
of TV Identical Independent Particles
................318
16.4.3
Behavior of Fermion and Boson Systems
at Low Temperature
..............................320
16.4.4
Stimulated Emission and the Laser Effect
...........322
16.4.5
Uncertainty Relations for a System of
N
Fermions
.... 323
16.4.6
Complex Atoms and Atomic Shells
.................324
Further Reading
............................................326
Exercises
..................................................327
17.
The Evolution of Systems
.................................331
Written in collaboration with Gilbert
Grynberg
17.1
Time-Dependent Perturbation Theory
.....................332
17.1.1
Transition Probabilities
...........................332
17.1.2
Evolution Equations
..............................332
17.1.3
Perturbative Solution
.............................333
17.1.4
First-Order Solution: the Born Approximation
.......334
17.1.5
Particular Cases
..................................334
17.1.6
Perturbative and Exact Solutions
...................335
17.2
Interaction of an Atom with an Electromagnetic Wave
......336
17.2.1
The Electric-Dipole Approximation
.................336
17.2.2
Justification of the Electric
Dipole
Interaction
........337
17.2.3
Absorption of Energy by an Atom
..................338
17.2.4
Selection Rules
...................................339
17.2.5
Spontaneous Emission
............................339
17.2.6
Control of Atomic Motion by Light
.................341
17.3
Decay of a System
......................................343
17.3.1
The Radioactivity of 57Fe
.........................343
17.3.2
The Fermi Golden Rule
...........................345
17.3.3
Orders of Magnitude
..............................346
17.3.4
Behavior for Long Times
..........................347
17.4
The Time-Energy Uncertainty Relation
...................350
17.4.1
Isolated Systems and Intrinsic Interpretations
........350
17.4.2
Interpretation of Landau and Peierls
................351
XX
Contents
17.4.3
The Einstein-Bohr Controversy
....................352
Further Reading
............................................353
Exercises
..................................................353
18.
Scattering Processes
......................................357
18.1
Concept of Cross Section
................................358
18.1.1
Definition of Cross Section
.........................358
18.1.2
Classical Calculation
..............................359
18.1.3
Examples
.......................................360
18.2
Quantum Calculation in the Born Approximation
..........361
18.2.1
Asymptotic States
................................361
18.2.2
Transition Probability
............................362
18.2.3
Scattering Cross Section
...........................363
18.2.4
Validity of the Born Approximation
................364
18.2.5
Example: the Yukawa Potential
....................365
18.2.6
Range of a Potential in Quantum Mechanics
.........366
18.3
Exploration of Composite Systems
........................367
18.3.1
Scattering Off a Bound State and the Form Factor
... 367
18.3.2
Scattering by a Charge Distribution
................368
18.4
General Scattering Theory
...............................372
18.4.1
Scattering States
................................. 372
18.4.2
The Scattering Amplitude
......................... 373
18.4.3
The Integral Equation for Scattering
................ 374
18.5
Scattering at Low Energy
............................... 375
18.5.1
The Scattering Length
............................375
18.5.2
Explicit Calculation of a Scattering Length
..........376
18.5.3
The Case of Identical Particles
.....................377
Further Reading
............................................378
Exercises
..................................................378
19.
Qualitative Physics on a Macroscopic Scale
...............381
Written in collaboration with Alfred Vidal-Madjar
19.1
Confined Particles and Ground State Energy
...............382
19.1.1
The Quantum Pressure
...........................382
19.1.2
Hydrogen Atom
..................................383
19.1.3
iV-Fermion Systems and Complex
Atonas
............383
19.1.4
Molecules, Liquids and Solids
......................384
19.1.5
Hardness of a Solid
...............................385
19.2
Gravitational Versus Electrostatic Forces
..................386
19.2.1
Screening of Electrostatic Interactions
...............386
19.2.2
Additivity of Gravitational Interactions
.............387
19.2.3
Ground State of a Gravity-Dominated Object
........388
19.2.4
Liquefaction of a Solid and the Height of Mountains
.. 390
19.3
White Dwarfs, Neutron Stars
and the Gravitational Catastrophe
........................392
Contents XXI
19.3.1
White Dwarfs and the Chandrasekhar Mass
.........392
19.3.2
Neutron Stars
....................................394
Further Reading
............................................396
20.
Early History of Quantum Mechanics
.....................397
20.1
The Origin of Quantum Concepts
........................397
20.1.1
Planck s Radiation Law
...........................397
20.1.2
Photons
.........................................398
20.2
The Atomic Spectrum
..................................398
20.2.1
Empirical Regularities of Atomic Spectra
............398
20.2.2
The Structure of Atoms
...........................399
20.2.3
The Bohr Atom
..................................399
20.2.4
The Old Theory of Quanta
........................400
20.3
Spin
..................................................400
20.4
Heisenberg s Matrices
...................................401
20.5
Wave Mechanics
........................................403
20.6
The Mathematical Formalization
.........................404
20.7
Some Important Steps in More Recent Years
...............405
Further Reading
............................................406
Appendix A. Concepts of Probability Theory
...............407
1
Fundamental Concepts
..................................407
2
Examples of Probability Laws
............................408
2.1
Discrete Laws
....................................408
2.2
Continuous Probability Laws
in One or Several Variables
........................408
3
Random Variables
......................................409
3.1
Definition
.......................................409
3.2
Conditional Probabilities
..........................410
3.3
Independent Random Variables
....................411
3.4
Binomial Law and the Gaussian Approximation
......411
4
Moments of Probability Distributions
.....................412
4.1
Mean Value or Expectation Value
..................412
4.2
Variance and Mean Square Deviation
...............412
4.3
Bienaymé-Tchebycheff
Inequality
...................413
4.4
Experimental Verification of a Probability Law
.......413
Exercises
..................................................414
Appendix B. Dirac Distribution, Fourier Transformation
.... 417
1
Dirac Distribution, or
б
Function
.......................417
1.1
Definition of 6(x)
.................................417
1.2
Examples of Functions Which Tend to 5(x)
..........418
1.3
Properties of
б(х)
................................419
2
Distributions
...........................................420
2.1
The Space
S
.....................................420
XXII Contents
2.2
Linear
Functionate
................................420
2.3
Derivative
of a Distribution
........................421
2.4
Convolution Product
..............................422
3
Fourier Transformation
..................................422
3.1
Definition
.......................................422
3.2
Fourier Transform of a Gaussian
...................423
3.3
Inversion of the Fourier Transformation
.............423
3.4
Parseval-Plancherel Theorem
......................424
3.5
Fourier Transform of a Distribution
.................425
3.6
Uncertainty Relation
..............................426
Exercises
..................................................427
Appendix C. Operators in Infinite-Dimensional Spaces
......429
1
Matrix Elements of an Operator
..........................429
2
Continuous Bases
.......................................430
Appendix D. The Density Operator
.........................435
1
Pure States
............................................436
1.1
A Mathematical Tool: the Trace of an Operator
......436
1.2
The Density Operator of Pure States
...............437
1.3
Alternative Formulation of Quantum Mechanics
for Pure States
...................................438
2
Statistical Mixtures
.....................................439
2.1
A Particular Case: an Unpolarized Spin-1/2 System
.. 439
2.2
The Density Operator for Statistical Mixtures
........440
3
Examples of Density Operators
...........................441
3.1
The Micro-Canonical and Canonical Ensembles
......441
3.2
The Wigner Distribution of a Spinless Point Particle
.. 442
4
Entangled Systems
.....................................444
4.1
Reduced Density Operator
........................444
4.2
Evolution of a Reduced Density Operator
...........444
4.3
Entanglement and Measurement
....................445
Further Reading
............................................446
Exercises
..................................................446
Solutions to the Exercises
....................................449
Index
.........................................................503
|
any_adam_object | 1 |
author | Basdevant, Jean-Louis 1939- Dalibard, Jean 1958- |
author_GND | (DE-588)133559130 (DE-588)121510824 |
author_facet | Basdevant, Jean-Louis 1939- Dalibard, Jean 1958- |
author_role | aut aut |
author_sort | Basdevant, Jean-Louis 1939- |
author_variant | j l b jlb j d jd |
building | Verbundindex |
bvnumber | BV022485796 |
classification_rvk | UK 1000 |
classification_tum | PHY 020f |
ctrlnum | (OCoLC)634405632 (DE-599)BVBBV022485796 |
discipline | Physik |
edition | Corr. 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01560nam a22003858c 4500</leader><controlfield tag="001">BV022485796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150626 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070628s2005 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540277064</subfield><subfield code="9">3-540-27706-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540277064</subfield><subfield code="9">978-3-540-27706-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634405632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022485796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basdevant, Jean-Louis</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133559130</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum mechanics</subfield><subfield code="b">with 92 exercises with solutions</subfield><subfield code="c">Jean-Louis Basdevant ; Jean Dalibard</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 511 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="e">1 CD-Rom (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dalibard, Jean</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121510824</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015693108&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015693108</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022485796 |
illustrated | Illustrated |
indexdate | 2024-12-20T12:56:27Z |
institution | BVB |
isbn | 3540277064 9783540277064 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015693108 |
oclc_num | 634405632 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-526 DE-19 DE-BY-UBM DE-29T |
owner_facet | DE-384 DE-703 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-526 DE-19 DE-BY-UBM DE-29T |
physical | XXII, 511 S. Ill., graph. Darst. 1 CD-Rom (12 cm) |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
spellingShingle | Basdevant, Jean-Louis 1939- Dalibard, Jean 1958- Quantum mechanics with 92 exercises with solutions Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047989-4 (DE-588)4123623-3 |
title | Quantum mechanics with 92 exercises with solutions |
title_auth | Quantum mechanics with 92 exercises with solutions |
title_exact_search | Quantum mechanics with 92 exercises with solutions |
title_full | Quantum mechanics with 92 exercises with solutions Jean-Louis Basdevant ; Jean Dalibard |
title_fullStr | Quantum mechanics with 92 exercises with solutions Jean-Louis Basdevant ; Jean Dalibard |
title_full_unstemmed | Quantum mechanics with 92 exercises with solutions Jean-Louis Basdevant ; Jean Dalibard |
title_short | Quantum mechanics |
title_sort | quantum mechanics with 92 exercises with solutions |
title_sub | with 92 exercises with solutions |
topic | Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Quantenmechanik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015693108&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT basdevantjeanlouis quantummechanicswith92exerciseswithsolutions AT dalibardjean quantummechanicswith92exerciseswithsolutions |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Handapparate (nicht verfügbar)
Signatur: |
0049 PHY 020f 2007 A 10216 Lageplan |
---|---|
Exemplar 1 | Dauerhaft ausgeliehen Ausgeliehen – Rückgabe bis: 31.12.9999 |
Teilbibliothek Physik
Signatur: |
0202 PHY 020f 2002 A 212(1,2005) Lageplan 0204 PHY 020f 2002 A 212(1,2005) Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |
Exemplar 1 | Nicht ausleihbar Am Standort |
Teilbibliothek Chemie, Lehrbuchsammlung
Signatur: |
0303 PHY 020f 2009 L 379 Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |
Exemplar 2 | Ausleihbar Am Standort |
Exemplar 3 | Ausleihbar Am Standort |
Exemplar 4 | Ausleihbar Am Standort |
Exemplar 5 | Ausleihbar Am Standort |
Exemplar 6 | Ausleihbar Am Standort |
Exemplar 7 | Ausleihbar Am Standort |
Exemplar 8 | Ausleihbar Am Standort |
Exemplar 9 | Ausleihbar Am Standort |
Exemplar 10 | Ausleihbar Am Standort |
Exemplar 11 | Ausleihbar Am Standort |
Exemplar 12 | Ausleihbar Am Standort |
Exemplar 13 | Ausleihbar Am Standort |
Exemplar 14 | Ausleihbar Am Standort |
Exemplar 15 | Ausleihbar Am Standort |
Exemplar 16 | Ausleihbar Am Standort |
Exemplar 17 | Ausleihbar Am Standort |
Exemplar 18 | Ausleihbar Am Standort |
Exemplar 19 | Ausleihbar Am Standort |
Exemplar 20 | Ausleihbar Am Standort |
Exemplar 21 | Ausleihbar Am Standort |
Exemplar 22 | Ausleihbar Am Standort |
Exemplar 23 | Ausleihbar Am Standort |
Exemplar 24 | Ausleihbar Am Standort |
Exemplar 25 | Ausleihbar Am Standort |
Exemplar 26 | Ausleihbar Am Standort |
Exemplar 27 | Ausleihbar Am Standort |
Exemplar 28 | Ausleihbar Am Standort |
Exemplar 29 | Ausleihbar Am Standort |
Exemplar 30 | Ausleihbar Am Standort |
Exemplar 31 | Ausleihbar Am Standort |
Exemplar 32 | Ausleihbar Am Standort |
Exemplar 33 | Ausleihbar Am Standort |