Capacity and survivability models for telecommunication networks:
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
1997
|
Schriftenreihe: | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin
1997,24 |
Schlagwörter: | |
Abstract: | Abstract: "Designing low-cost networks that survive certain failure situations is one of the prime tasks in the telecommunication industry. In this paper we survey the development of models for network survivability used in practice in the last ten years. We show how algorithms integrating polyhedral combinatorics, linear programming, and various heuristic ideas can help solve real-world network dimensioning instances to optimality or within reasonable quality guarantees in acceptable running times. The most general problem type we adress is the following. Let a communication demand between each pair of nodes of a telecommunication network be given. We consider the problem of choosing, among a discrete set of possible capacities, which capacity to install on each of the possible edges of the network in order to (i) satisfy all demands, (ii) minimize the building cost of the network. In addition to determining the network topology and the edge capacities we have to provide, for each demand, a routing such that (iii) no path can carry more than a given percentage of the demand, (iv) no path in the routing exceeds a given length. We also have to make sure that (v) for every single node or edge failure, a certain percentage of the demand is reroutable. Moreover, for all failure situations feasible routings must be computed. The model described above has been developed in cooperation with a German mobile phone provider. We present a mixed-integer programming formulation of this model and computational results with data from practice." |
Umfang: | 14 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV017189229 | ||
003 | DE-604 | ||
005 | 20031002 | ||
007 | t| | ||
008 | 030604s1997 xx |||| 00||| eng d | ||
035 | |a (OCoLC)38761550 | ||
035 | |a (DE-599)BVBBV017189229 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Alevras, Dimitris |e Verfasser |4 aut | |
245 | 1 | 0 | |a Capacity and survivability models for telecommunication networks |c Dimitris Alevras ; Martin Grötschel ; Roland Wessäly |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 1997 | |
300 | |a 14 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |v 1997,24 | |
520 | 3 | |a Abstract: "Designing low-cost networks that survive certain failure situations is one of the prime tasks in the telecommunication industry. In this paper we survey the development of models for network survivability used in practice in the last ten years. We show how algorithms integrating polyhedral combinatorics, linear programming, and various heuristic ideas can help solve real-world network dimensioning instances to optimality or within reasonable quality guarantees in acceptable running times. The most general problem type we adress is the following. Let a communication demand between each pair of nodes of a telecommunication network be given. We consider the problem of choosing, among a discrete set of possible capacities, which capacity to install on each of the possible edges of the network in order to (i) satisfy all demands, (ii) minimize the building cost of the network. In addition to determining the network topology and the edge capacities we have to provide, for each demand, a routing such that (iii) no path can carry more than a given percentage of the demand, (iv) no path in the routing exceeds a given length. We also have to make sure that (v) for every single node or edge failure, a certain percentage of the demand is reroutable. Moreover, for all failure situations feasible routings must be computed. The model described above has been developed in cooperation with a German mobile phone provider. We present a mixed-integer programming formulation of this model and computational results with data from practice." | |
650 | 4 | |a Data transmission systems | |
650 | 4 | |a Electric network topology | |
650 | 4 | |a Integer programming | |
650 | 4 | |a Operations research | |
700 | 1 | |a Grötschel, Martin |d 1948- |e Verfasser |0 (DE-588)108975282 |4 aut | |
700 | 1 | |a Wessäly, Roland |d 1967- |e Verfasser |0 (DE-588)122164350 |4 aut | |
810 | 2 | |a Konrad-Zuse-Zentrum für Informationstechnik Berlin |t Preprint SC |v 1997,24 |w (DE-604)BV004801715 |9 1997,24 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-010360206 |
Datensatz im Suchindex
_version_ | 1820981149555490816 |
---|---|
adam_text | |
any_adam_object | |
author | Alevras, Dimitris Grötschel, Martin 1948- Wessäly, Roland 1967- |
author_GND | (DE-588)108975282 (DE-588)122164350 |
author_facet | Alevras, Dimitris Grötschel, Martin 1948- Wessäly, Roland 1967- |
author_role | aut aut aut |
author_sort | Alevras, Dimitris |
author_variant | d a da m g mg r w rw |
building | Verbundindex |
bvnumber | BV017189229 |
classification_rvk | SS 4777 |
ctrlnum | (OCoLC)38761550 (DE-599)BVBBV017189229 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV017189229</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031002</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030604s1997 xx |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)38761550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017189229</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alevras, Dimitris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Capacity and survivability models for telecommunication networks</subfield><subfield code="c">Dimitris Alevras ; Martin Grötschel ; Roland Wessäly</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="v">1997,24</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "Designing low-cost networks that survive certain failure situations is one of the prime tasks in the telecommunication industry. In this paper we survey the development of models for network survivability used in practice in the last ten years. We show how algorithms integrating polyhedral combinatorics, linear programming, and various heuristic ideas can help solve real-world network dimensioning instances to optimality or within reasonable quality guarantees in acceptable running times. The most general problem type we adress is the following. Let a communication demand between each pair of nodes of a telecommunication network be given. We consider the problem of choosing, among a discrete set of possible capacities, which capacity to install on each of the possible edges of the network in order to (i) satisfy all demands, (ii) minimize the building cost of the network. In addition to determining the network topology and the edge capacities we have to provide, for each demand, a routing such that (iii) no path can carry more than a given percentage of the demand, (iv) no path in the routing exceeds a given length. We also have to make sure that (v) for every single node or edge failure, a certain percentage of the demand is reroutable. Moreover, for all failure situations feasible routings must be computed. The model described above has been developed in cooperation with a German mobile phone provider. We present a mixed-integer programming formulation of this model and computational results with data from practice."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data transmission systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric network topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grötschel, Martin</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108975282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wessäly, Roland</subfield><subfield code="d">1967-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122164350</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Konrad-Zuse-Zentrum für Informationstechnik Berlin</subfield><subfield code="t">Preprint SC</subfield><subfield code="v">1997,24</subfield><subfield code="w">(DE-604)BV004801715</subfield><subfield code="9">1997,24</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010360206</subfield></datafield></record></collection> |
id | DE-604.BV017189229 |
illustrated | Not Illustrated |
indexdate | 2025-01-11T19:15:52Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-010360206 |
oclc_num | 38761550 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 14 S. |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series2 | Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin |
spelling | Alevras, Dimitris Verfasser aut Capacity and survivability models for telecommunication networks Dimitris Alevras ; Martin Grötschel ; Roland Wessäly Berlin Konrad-Zuse-Zentrum für Informationstechnik 1997 14 S. txt rdacontent n rdamedia nc rdacarrier Preprint SC / Konrad-Zuse-Zentrum für Informationstechnik Berlin 1997,24 Abstract: "Designing low-cost networks that survive certain failure situations is one of the prime tasks in the telecommunication industry. In this paper we survey the development of models for network survivability used in practice in the last ten years. We show how algorithms integrating polyhedral combinatorics, linear programming, and various heuristic ideas can help solve real-world network dimensioning instances to optimality or within reasonable quality guarantees in acceptable running times. The most general problem type we adress is the following. Let a communication demand between each pair of nodes of a telecommunication network be given. We consider the problem of choosing, among a discrete set of possible capacities, which capacity to install on each of the possible edges of the network in order to (i) satisfy all demands, (ii) minimize the building cost of the network. In addition to determining the network topology and the edge capacities we have to provide, for each demand, a routing such that (iii) no path can carry more than a given percentage of the demand, (iv) no path in the routing exceeds a given length. We also have to make sure that (v) for every single node or edge failure, a certain percentage of the demand is reroutable. Moreover, for all failure situations feasible routings must be computed. The model described above has been developed in cooperation with a German mobile phone provider. We present a mixed-integer programming formulation of this model and computational results with data from practice." Data transmission systems Electric network topology Integer programming Operations research Grötschel, Martin 1948- Verfasser (DE-588)108975282 aut Wessäly, Roland 1967- Verfasser (DE-588)122164350 aut Konrad-Zuse-Zentrum für Informationstechnik Berlin Preprint SC 1997,24 (DE-604)BV004801715 1997,24 |
spellingShingle | Alevras, Dimitris Grötschel, Martin 1948- Wessäly, Roland 1967- Capacity and survivability models for telecommunication networks Data transmission systems Electric network topology Integer programming Operations research |
title | Capacity and survivability models for telecommunication networks |
title_auth | Capacity and survivability models for telecommunication networks |
title_exact_search | Capacity and survivability models for telecommunication networks |
title_full | Capacity and survivability models for telecommunication networks Dimitris Alevras ; Martin Grötschel ; Roland Wessäly |
title_fullStr | Capacity and survivability models for telecommunication networks Dimitris Alevras ; Martin Grötschel ; Roland Wessäly |
title_full_unstemmed | Capacity and survivability models for telecommunication networks Dimitris Alevras ; Martin Grötschel ; Roland Wessäly |
title_short | Capacity and survivability models for telecommunication networks |
title_sort | capacity and survivability models for telecommunication networks |
topic | Data transmission systems Electric network topology Integer programming Operations research |
topic_facet | Data transmission systems Electric network topology Integer programming Operations research |
volume_link | (DE-604)BV004801715 |
work_keys_str_mv | AT alevrasdimitris capacityandsurvivabilitymodelsfortelecommunicationnetworks AT grotschelmartin capacityandsurvivabilitymodelsfortelecommunicationnetworks AT wessalyroland capacityandsurvivabilitymodelsfortelecommunicationnetworks |