Learning stochastic motifs from genetic sequences:
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Tokyo, Japan
1991
|
Schriftenreihe: | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report
658 |
Schlagwörter: | |
Abstract: | Abstract: "This paper presents a methodology for learning stochastic motifs from given genetic sequences. A stochastic motif here is a probabilistic mapping from a genetic sequence (which has been drawn from a finite alphabet) to a number of categories (cytochrome c, globin, trypsin, etc.). We propose a new representation of stochastic motifs, stochastic decision predicates (SDPs) and reduce our learning problem to that of learning SDPs. We employ Rissanen's Minimum Description Length (MDL) principle in selecting an optimal hypothesis and present a detailed method for calculating description lengths relative to SDPs. Experimental results show the validity of our learning strategy." |
Umfang: | 5 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010954351 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 960917s1991 xx |||| 00||| engod | ||
035 | |a (OCoLC)26293305 | ||
035 | |a (DE-599)BVBBV010954351 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Yamanishi, Kenji |e Verfasser |4 aut | |
245 | 1 | 0 | |a Learning stochastic motifs from genetic sequences |c by K. Yamanishi & A. Konagaya |
264 | 1 | |a Tokyo, Japan |c 1991 | |
300 | |a 5 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |v 658 | |
520 | 3 | |a Abstract: "This paper presents a methodology for learning stochastic motifs from given genetic sequences. A stochastic motif here is a probabilistic mapping from a genetic sequence (which has been drawn from a finite alphabet) to a number of categories (cytochrome c, globin, trypsin, etc.). We propose a new representation of stochastic motifs, stochastic decision predicates (SDPs) and reduce our learning problem to that of learning SDPs. We employ Rissanen's Minimum Description Length (MDL) principle in selecting an optimal hypothesis and present a detailed method for calculating description lengths relative to SDPs. Experimental results show the validity of our learning strategy." | |
650 | 4 | |a Genetics |x Computer programs | |
700 | 1 | |a Konagawa, Akihiko |e Verfasser |4 aut | |
830 | 0 | |a Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |v 658 |w (DE-604)BV010923438 |9 658 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007326714 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0111 2001 B 6123-658 |
---|---|
DE-BY-TUM_katkey | 765847 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040010279195 |
_version_ | 1821938138781581312 |
any_adam_object | |
author | Yamanishi, Kenji Konagawa, Akihiko |
author_facet | Yamanishi, Kenji Konagawa, Akihiko |
author_role | aut aut |
author_sort | Yamanishi, Kenji |
author_variant | k y ky a k ak |
building | Verbundindex |
bvnumber | BV010954351 |
ctrlnum | (OCoLC)26293305 (DE-599)BVBBV010954351 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01685nam a2200301 cb4500</leader><controlfield tag="001">BV010954351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960917s1991 xx |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)26293305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010954351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yamanishi, Kenji</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning stochastic motifs from genetic sequences</subfield><subfield code="c">by K. Yamanishi & A. Konagaya</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo, Japan</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report</subfield><subfield code="v">658</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "This paper presents a methodology for learning stochastic motifs from given genetic sequences. A stochastic motif here is a probabilistic mapping from a genetic sequence (which has been drawn from a finite alphabet) to a number of categories (cytochrome c, globin, trypsin, etc.). We propose a new representation of stochastic motifs, stochastic decision predicates (SDPs) and reduce our learning problem to that of learning SDPs. We employ Rissanen's Minimum Description Length (MDL) principle in selecting an optimal hypothesis and present a detailed method for calculating description lengths relative to SDPs. Experimental results show the validity of our learning strategy."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetics</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Konagawa, Akihiko</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report</subfield><subfield code="v">658</subfield><subfield code="w">(DE-604)BV010923438</subfield><subfield code="9">658</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007326714</subfield></datafield></record></collection> |
id | DE-604.BV010954351 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T10:03:45Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007326714 |
oclc_num | 26293305 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 5 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |
series2 | Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report |
spellingShingle | Yamanishi, Kenji Konagawa, Akihiko Learning stochastic motifs from genetic sequences Shin-Sedai-Konpyūta-Gijutsu-Kaihatsu-Kikō <Tōkyō>: ICOT technical report Genetics Computer programs |
title | Learning stochastic motifs from genetic sequences |
title_auth | Learning stochastic motifs from genetic sequences |
title_exact_search | Learning stochastic motifs from genetic sequences |
title_full | Learning stochastic motifs from genetic sequences by K. Yamanishi & A. Konagaya |
title_fullStr | Learning stochastic motifs from genetic sequences by K. Yamanishi & A. Konagaya |
title_full_unstemmed | Learning stochastic motifs from genetic sequences by K. Yamanishi & A. Konagaya |
title_short | Learning stochastic motifs from genetic sequences |
title_sort | learning stochastic motifs from genetic sequences |
topic | Genetics Computer programs |
topic_facet | Genetics Computer programs |
volume_link | (DE-604)BV010923438 |
work_keys_str_mv | AT yamanishikenji learningstochasticmotifsfromgeneticsequences AT konagawaakihiko learningstochasticmotifsfromgeneticsequences |
Paper/Kapitel scannen lassen
Teilbibliothek Mathematik & Informatik, Berichte
Signatur: |
0111 2001 B 6123-658 Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |