Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
O'Reilly Media, Inc.
2017
|
Ausgabe: | 1st edition |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781098192150/?ar |
Zusammenfassung: | Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines |
Umfang: | 1 online resource (408 pages) |
ISBN: | 9781491974551 1491974559 9781491974537 1491974532 |
Internformat
MARC
LEADER | 00000nam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-109653017 | ||
003 | DE-627-1 | ||
005 | 20241107103330.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241107s2017 xx |||||o 00| ||eng c | ||
020 | |a 9781491974551 |9 978-1-4919-7455-1 | ||
020 | |a 1491974559 |9 1-4919-7455-9 | ||
020 | |a 9781491974537 |9 978-1-4919-7453-7 | ||
020 | |a 1491974532 |9 1-4919-7453-2 | ||
035 | |a (DE-627-1)109653017 | ||
035 | |a (DE-599)KEP109653017 | ||
035 | |a (ORHE)9781098192150 | ||
035 | |a (DE-627-1)109653017 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a [E] | |
100 | 1 | |a Lakshmanan, Valliappa |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data Science on the Google Cloud Platform |c Lakshmanan, Valliappa |
250 | |a 1st edition | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b O'Reilly Media, Inc. |c 2017 | |
300 | |a 1 online resource (408 pages) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines | ||
630 | 2 | 0 | |a Google Apps |
650 | 4 | |a Google Apps | |
776 | 1 | |z 1491974567 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1491974567 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098192150/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-109653017 |
---|---|
_version_ | 1833357132065406976 |
adam_text | |
any_adam_object | |
author | Lakshmanan, Valliappa |
author_facet | Lakshmanan, Valliappa |
author_role | aut |
author_sort | Lakshmanan, Valliappa |
author_variant | v l vl |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)109653017 (DE-599)KEP109653017 (ORHE)9781098192150 |
dewey-raw | [E] |
dewey-search | [E] |
edition | 1st edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02620nam a22004092c 4500</leader><controlfield tag="001">ZDB-30-ORH-109653017</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241107103330.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241107s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491974551</subfield><subfield code="9">978-1-4919-7455-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491974559</subfield><subfield code="9">1-4919-7455-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491974537</subfield><subfield code="9">978-1-4919-7453-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491974532</subfield><subfield code="9">1-4919-7453-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)109653017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP109653017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098192150</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)109653017</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">[E]</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lakshmanan, Valliappa</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Science on the Google Cloud Platform</subfield><subfield code="c">Lakshmanan, Valliappa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (408 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Google Apps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Google Apps</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1491974567</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1491974567</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098192150/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-109653017 |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:46:49Z |
institution | BVB |
isbn | 9781491974551 1491974559 9781491974537 1491974532 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (408 pages) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Lakshmanan, Valliappa VerfasserIn aut Data Science on the Google Cloud Platform Lakshmanan, Valliappa 1st edition [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2017 1 online resource (408 pages) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You'll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines Google Apps 1491974567 Erscheint auch als Druck-Ausgabe 1491974567 |
spellingShingle | Lakshmanan, Valliappa Data Science on the Google Cloud Platform Google Apps |
title | Data Science on the Google Cloud Platform |
title_auth | Data Science on the Google Cloud Platform |
title_exact_search | Data Science on the Google Cloud Platform |
title_full | Data Science on the Google Cloud Platform Lakshmanan, Valliappa |
title_fullStr | Data Science on the Google Cloud Platform Lakshmanan, Valliappa |
title_full_unstemmed | Data Science on the Google Cloud Platform Lakshmanan, Valliappa |
title_short | Data Science on the Google Cloud Platform |
title_sort | data science on the google cloud platform |
topic | Google Apps |
topic_facet | Google Apps |
work_keys_str_mv | AT lakshmananvalliappa datascienceonthegooglecloudplatform |