Python feature engineering cookbook: a complete guide to crafting powerful features for your machine learning models
Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical var...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Birmingham, UK
Packt Publishing Ltd.
2024
|
Edition: | Third edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781835883587/?ar |
Summary: | Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python You'll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data. The book explores feature extraction from complex data types such as dates, times, and text. You'll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series. By the end, you'll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance. |
Item Description: | Includes bibliographical references and index |
Physical Description: | 1 online resource (396 pages) illustrations |
ISBN: | 9781835883594 1835883591 9781835883587 |
Staff View
MARC
LEADER | 00000nam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-10852938X | ||
003 | DE-627-1 | ||
005 | 20241001123229.0 | ||
007 | cr uuu---uuuuu | ||
008 | 241001s2024 xx |||||o 00| ||eng c | ||
020 | |a 9781835883594 |9 978-1-83588-359-4 | ||
020 | |a 1835883591 |9 1-83588-359-1 | ||
020 | |a 9781835883587 |9 978-1-83588-358-7 | ||
035 | |a (DE-627-1)10852938X | ||
035 | |a (DE-599)KEP10852938X | ||
035 | |a (ORHE)9781835883587 | ||
035 | |a (DE-627-1)10852938X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.13/3 |2 23/eng/20240909 | |
100 | 1 | |a Galli, Soledad |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Python feature engineering cookbook |b a complete guide to crafting powerful features for your machine learning models |c Soledad Galli ; foreword by Christoph Molnar |
250 | |a Third edition. | ||
264 | 1 | |a Birmingham, UK |b Packt Publishing Ltd. |c 2024 | |
300 | |a 1 online resource (396 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python You'll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data. The book explores feature extraction from complex data types such as dates, times, and text. You'll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series. By the end, you'll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Machine learning | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Apprentissage automatique | |
700 | 1 | |a Molnar, Christoph |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781835883587/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-10852938X |
---|---|
_version_ | 1833357132505808896 |
adam_text | |
any_adam_object | |
author | Galli, Soledad |
author2 | Molnar, Christoph |
author2_role | ctb |
author2_variant | c m cm |
author_facet | Galli, Soledad Molnar, Christoph |
author_role | aut |
author_sort | Galli, Soledad |
author_variant | s g sg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)10852938X (DE-599)KEP10852938X (ORHE)9781835883587 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Third edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02695nam a22004212c 4500</leader><controlfield tag="001">ZDB-30-ORH-10852938X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241001123229.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">241001s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781835883594</subfield><subfield code="9">978-1-83588-359-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1835883591</subfield><subfield code="9">1-83588-359-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781835883587</subfield><subfield code="9">978-1-83588-358-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10852938X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP10852938X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781835883587</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10852938X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23/eng/20240909</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Galli, Soledad</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python feature engineering cookbook</subfield><subfield code="b">a complete guide to crafting powerful features for your machine learning models</subfield><subfield code="c">Soledad Galli ; foreword by Christoph Molnar</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (396 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python You'll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data. The book explores feature extraction from complex data types such as dates, times, and text. You'll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series. By the end, you'll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Molnar, Christoph</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781835883587/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-10852938X |
illustrated | Illustrated |
indexdate | 2025-05-28T09:46:50Z |
institution | BVB |
isbn | 9781835883594 1835883591 9781835883587 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (396 pages) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing Ltd. |
record_format | marc |
spelling | Galli, Soledad VerfasserIn aut Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models Soledad Galli ; foreword by Christoph Molnar Third edition. Birmingham, UK Packt Publishing Ltd. 2024 1 online resource (396 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index Streamline data preprocessing and feature engineering in your machine learning project with this third edition of the Python Feature Engineering Cookbook to make your data preparation more efficient. This guide addresses common challenges, such as imputing missing values and encoding categorical variables using practical solutions and open source Python You'll learn advanced techniques for transforming numerical variables, discretizing variables, and dealing with outliers. Each chapter offers step-by-step instructions and real-world examples, helping you understand when and how to apply various transformations for well-prepared data. The book explores feature extraction from complex data types such as dates, times, and text. You'll see how to create new features through mathematical operations and decision trees and use advanced tools like Featuretools and tsfresh to extract features from relational data and time series. By the end, you'll be ready to build reproducible feature engineering pipelines that can be easily deployed into production, optimizing data preprocessing workflows and enhancing machine learning model performance. Python (Computer program language) Machine learning Python (Langage de programmation) Apprentissage automatique Molnar, Christoph MitwirkendeR ctb |
spellingShingle | Galli, Soledad Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models Python (Computer program language) Machine learning Python (Langage de programmation) Apprentissage automatique |
title | Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models |
title_auth | Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models |
title_exact_search | Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models |
title_full | Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models Soledad Galli ; foreword by Christoph Molnar |
title_fullStr | Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models Soledad Galli ; foreword by Christoph Molnar |
title_full_unstemmed | Python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models Soledad Galli ; foreword by Christoph Molnar |
title_short | Python feature engineering cookbook |
title_sort | python feature engineering cookbook a complete guide to crafting powerful features for your machine learning models |
title_sub | a complete guide to crafting powerful features for your machine learning models |
topic | Python (Computer program language) Machine learning Python (Langage de programmation) Apprentissage automatique |
topic_facet | Python (Computer program language) Machine learning Python (Langage de programmation) Apprentissage automatique |
work_keys_str_mv | AT gallisoledad pythonfeatureengineeringcookbookacompleteguidetocraftingpowerfulfeaturesforyourmachinelearningmodels AT molnarchristoph pythonfeatureengineeringcookbookacompleteguidetocraftingpowerfulfeaturesforyourmachinelearningmodels |