Building retrieval augmented generation (RAG) applications with LlamaIndex: from basic components to advanced RAG systems
This course offers a comprehensive exploration of the Retrieval-Augmented Generation (RAG) System and the LlamaIndex framework, tailored for individuals seeking to deepen their understanding and practical skills in advanced document handling and application customization. The course delves into the...
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Elektronisch Video |
Sprache: | Englisch |
Veröffentlicht: |
[Sebastopol, California]
O'Reilly Media, Inc.
[2024]
|
Ausgabe: | [First edition]. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/0790145860415/?ar |
Zusammenfassung: | This course offers a comprehensive exploration of the Retrieval-Augmented Generation (RAG) System and the LlamaIndex framework, tailored for individuals seeking to deepen their understanding and practical skills in advanced document handling and application customization. The course delves into the core principles of RAG and LlamaIndex, guiding learners through the nuances of building, evaluating, and optimizing RAG applications. Special emphasis is placed on customizing these applications to manage large volumes of documents effectively, employing LlamaIndex's robust capabilities. The significance of this course lies in its focus on real-world application and problem-solving. In an era where data management and efficient information retrieval are becoming more important, mastering the RAG system and LlamaIndex framework becomes crucial. This course addresses these needs by equipping learners with the skills to evaluate RAG systems critically, customize applications with advanced techniques like Data Ingestion and Embedding Models, and implement LlamaPacks for rapid application development. By the end of this course, participants will not only understand the theoretical aspects of RAG and LlamaIndex but will also be adept at applying these concepts to improve document management and retrieval in various professional scenarios. |
Beschreibung: | Online resource; title from title details screen (O'Reilly, viewed August 19, 2024) |
Umfang: | 1 Online-Ressource (1 video file (2 hr., 1 min.)) sound, color. |
Internformat
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-106608630 | ||
003 | DE-627-1 | ||
005 | 20241001123236.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 240902s2024 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)106608630 | ||
035 | |a (DE-599)KEP106608630 | ||
035 | |a (ORHE)0790145860415 | ||
035 | |a (DE-627-1)106608630 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/5 |2 23/eng/20240819 | |
245 | 1 | 0 | |a Building retrieval augmented generation (RAG) applications with LlamaIndex |b from basic components to advanced RAG systems |
250 | |a [First edition]. | ||
264 | 1 | |a [Sebastopol, California] |b O'Reilly Media, Inc. |c [2024] | |
300 | |a 1 Online-Ressource (1 video file (2 hr., 1 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title details screen (O'Reilly, viewed August 19, 2024) | ||
520 | |a This course offers a comprehensive exploration of the Retrieval-Augmented Generation (RAG) System and the LlamaIndex framework, tailored for individuals seeking to deepen their understanding and practical skills in advanced document handling and application customization. The course delves into the core principles of RAG and LlamaIndex, guiding learners through the nuances of building, evaluating, and optimizing RAG applications. Special emphasis is placed on customizing these applications to manage large volumes of documents effectively, employing LlamaIndex's robust capabilities. The significance of this course lies in its focus on real-world application and problem-solving. In an era where data management and efficient information retrieval are becoming more important, mastering the RAG system and LlamaIndex framework becomes crucial. This course addresses these needs by equipping learners with the skills to evaluate RAG systems critically, customize applications with advanced techniques like Data Ingestion and Embedding Models, and implement LlamaPacks for rapid application development. By the end of this course, participants will not only understand the theoretical aspects of RAG and LlamaIndex but will also be adept at applying these concepts to improve document management and retrieval in various professional scenarios. | ||
650 | 0 | |a Natural language processing (Computer science) | |
650 | 0 | |a Artificial intelligence | |
650 | 4 | |a Traitement automatique des langues naturelles | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
650 | 4 | |a Films de formation | |
650 | 4 | |a Films autres que de fiction | |
650 | 4 | |a Vidéos sur Internet | |
700 | 1 | |a Theja, Ravi |e MitwirkendeR |4 ctb | |
710 | 2 | |a O'Reilly (Firm), |e Verlag |4 pbl | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/0790145860415/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-106608630 |
---|---|
_version_ | 1821494928437411840 |
adam_text | |
any_adam_object | |
author2 | Theja, Ravi |
author2_role | ctb |
author2_variant | r t rt |
author_facet | Theja, Ravi |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)106608630 (DE-599)KEP106608630 (ORHE)0790145860415 |
dewey-full | 006.3/5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/5 |
dewey-search | 006.3/5 |
dewey-sort | 16.3 15 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03142cgm a22004932 4500</leader><controlfield tag="001">ZDB-30-ORH-106608630</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20241001123236.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240902s2024 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)106608630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP106608630</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0790145860415</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)106608630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/5</subfield><subfield code="2">23/eng/20240819</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Building retrieval augmented generation (RAG) applications with LlamaIndex</subfield><subfield code="b">from basic components to advanced RAG systems</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sebastopol, California]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 video file (2 hr., 1 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed August 19, 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This course offers a comprehensive exploration of the Retrieval-Augmented Generation (RAG) System and the LlamaIndex framework, tailored for individuals seeking to deepen their understanding and practical skills in advanced document handling and application customization. The course delves into the core principles of RAG and LlamaIndex, guiding learners through the nuances of building, evaluating, and optimizing RAG applications. Special emphasis is placed on customizing these applications to manage large volumes of documents effectively, employing LlamaIndex's robust capabilities. The significance of this course lies in its focus on real-world application and problem-solving. In an era where data management and efficient information retrieval are becoming more important, mastering the RAG system and LlamaIndex framework becomes crucial. This course addresses these needs by equipping learners with the skills to evaluate RAG systems critically, customize applications with advanced techniques like Data Ingestion and Embedding Models, and implement LlamaPacks for rapid application development. By the end of this course, participants will not only understand the theoretical aspects of RAG and LlamaIndex but will also be adept at applying these concepts to improve document management and retrieval in various professional scenarios.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films de formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Films autres que de fiction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Theja, Ravi</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0790145860415/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-106608630 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:10Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 video file (2 hr., 1 min.)) sound, color. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems [First edition]. [Sebastopol, California] O'Reilly Media, Inc. [2024] 1 Online-Ressource (1 video file (2 hr., 1 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title details screen (O'Reilly, viewed August 19, 2024) This course offers a comprehensive exploration of the Retrieval-Augmented Generation (RAG) System and the LlamaIndex framework, tailored for individuals seeking to deepen their understanding and practical skills in advanced document handling and application customization. The course delves into the core principles of RAG and LlamaIndex, guiding learners through the nuances of building, evaluating, and optimizing RAG applications. Special emphasis is placed on customizing these applications to manage large volumes of documents effectively, employing LlamaIndex's robust capabilities. The significance of this course lies in its focus on real-world application and problem-solving. In an era where data management and efficient information retrieval are becoming more important, mastering the RAG system and LlamaIndex framework becomes crucial. This course addresses these needs by equipping learners with the skills to evaluate RAG systems critically, customize applications with advanced techniques like Data Ingestion and Embedding Models, and implement LlamaPacks for rapid application development. By the end of this course, participants will not only understand the theoretical aspects of RAG and LlamaIndex but will also be adept at applying these concepts to improve document management and retrieval in various professional scenarios. Natural language processing (Computer science) Artificial intelligence Traitement automatique des langues naturelles Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet Theja, Ravi MitwirkendeR ctb O'Reilly (Firm), Verlag pbl |
spellingShingle | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems Natural language processing (Computer science) Artificial intelligence Traitement automatique des langues naturelles Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
title | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems |
title_auth | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems |
title_exact_search | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems |
title_full | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems |
title_fullStr | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems |
title_full_unstemmed | Building retrieval augmented generation (RAG) applications with LlamaIndex from basic components to advanced RAG systems |
title_short | Building retrieval augmented generation (RAG) applications with LlamaIndex |
title_sort | building retrieval augmented generation rag applications with llamaindex from basic components to advanced rag systems |
title_sub | from basic components to advanced RAG systems |
topic | Natural language processing (Computer science) Artificial intelligence Traitement automatique des langues naturelles Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
topic_facet | Natural language processing (Computer science) Artificial intelligence Traitement automatique des langues naturelles Intelligence artificielle artificial intelligence Instructional films Nonfiction films Internet videos Films de formation Films autres que de fiction Vidéos sur Internet |
work_keys_str_mv | AT thejaravi buildingretrievalaugmentedgenerationragapplicationswithllamaindexfrombasiccomponentstoadvancedragsystems AT oreillyfirm buildingretrievalaugmentedgenerationragapplicationswithllamaindexfrombasiccomponentstoadvancedragsystems |