DevOps tools and principles (video collection):
Learn MLOps for Machine Learning - With both machine learning and DevOps at the forefront these days, Milecia McGregor helps engineers understand how to apply key DevOps principles to their machine learning projects. When teams are working with machine learning models, changing features, different d...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Video |
Language: | English |
Published: |
[Place of publication not identified]
Pearson
[2024]
|
Edition: | [First edition]. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9780135358856/?ar |
Summary: | Learn MLOps for Machine Learning - With both machine learning and DevOps at the forefront these days, Milecia McGregor helps engineers understand how to apply key DevOps principles to their machine learning projects. When teams are working with machine learning models, changing features, different data sets, new algorithms, and unique computing resources all influence a machine learning model's performance. Tracking all of these items can be complicated. With tools such as DVC, MLFlow, AWS, you can meet the challenge. Milecia McGregor demonstrates how to use MLOps tools to improve machine learning and automate some of the steps in the process. In Securing Your DevOps Pipelines: DevSecOps Best Practices, Milecia covers how DevSecOps improves upon regular DevOps pipelines. She covers the tools and methodologies you can use to bring DevSecOps to your organization. By the end of the course, you will know how to build a DevSecOps pipeline and how to integrate different tools to handle the OWASP Top Ten, as well as compliance checks to stay up to date with regulations like HIPAA, PCI, and GDPR. |
Item Description: | Online resource; title from title details screen (O'Reilly, viewed May 7, 2024) |
Physical Description: | 1 Online-Ressource (1 video file (8 hr., 15 min.)) sound, color. |
ISBN: | 9780135358856 013535885X |
Staff View
MARC
LEADER | 00000ngm a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-103622209 | ||
003 | DE-627-1 | ||
005 | 20240603113657.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 240603s2024 xx ||| |o o ||eng c | ||
020 | |a 9780135358856 |c electronic video |9 978-0-13-535885-6 | ||
020 | |a 013535885X |c electronic video |9 0-13-535885-X | ||
035 | |a (DE-627-1)103622209 | ||
035 | |a (DE-599)KEP103622209 | ||
035 | |a (ORHE)9780135358856 | ||
035 | |a (DE-627-1)103622209 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.1 |2 23/eng/20240507 | |
245 | 0 | 0 | |a DevOps tools and principles (video collection) |c Milecia McGregor |
250 | |a [First edition]. | ||
264 | 1 | |a [Place of publication not identified] |b Pearson |c [2024] | |
300 | |a 1 Online-Ressource (1 video file (8 hr., 15 min.)) |b sound, color. | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title details screen (O'Reilly, viewed May 7, 2024) | ||
520 | |a Learn MLOps for Machine Learning - With both machine learning and DevOps at the forefront these days, Milecia McGregor helps engineers understand how to apply key DevOps principles to their machine learning projects. When teams are working with machine learning models, changing features, different data sets, new algorithms, and unique computing resources all influence a machine learning model's performance. Tracking all of these items can be complicated. With tools such as DVC, MLFlow, AWS, you can meet the challenge. Milecia McGregor demonstrates how to use MLOps tools to improve machine learning and automate some of the steps in the process. In Securing Your DevOps Pipelines: DevSecOps Best Practices, Milecia covers how DevSecOps improves upon regular DevOps pipelines. She covers the tools and methodologies you can use to bring DevSecOps to your organization. By the end of the course, you will know how to build a DevSecOps pipeline and how to integrate different tools to handle the OWASP Top Ten, as well as compliance checks to stay up to date with regulations like HIPAA, PCI, and GDPR. | ||
650 | 0 | |a Computer software |x Development | |
650 | 0 | |a Machine learning | |
650 | 4 | |a Instructional films | |
650 | 4 | |a Nonfiction films | |
650 | 4 | |a Internet videos | |
700 | 1 | |a McGregor, Milecia |e MitwirkendeR |4 ctb | |
710 | 2 | |a Pearson (Firm), |e Verlag |4 pbl | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780135358856/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-103622209 |
---|---|
_version_ | 1831287146356408320 |
adam_text | |
any_adam_object | |
author2 | McGregor, Milecia |
author2_role | ctb |
author2_variant | m m mm |
author_facet | McGregor, Milecia |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)103622209 (DE-599)KEP103622209 (ORHE)9780135358856 |
dewey-full | 005.1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1 |
dewey-search | 005.1 |
dewey-sort | 15.1 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02685ngm a22004452c 4500</leader><controlfield tag="001">ZDB-30-ORH-103622209</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240603113657.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240603s2024 xx ||| |o o ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780135358856</subfield><subfield code="c">electronic video</subfield><subfield code="9">978-0-13-535885-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">013535885X</subfield><subfield code="c">electronic video</subfield><subfield code="9">0-13-535885-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)103622209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP103622209</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780135358856</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)103622209</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.1</subfield><subfield code="2">23/eng/20240507</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">DevOps tools and principles (video collection)</subfield><subfield code="c">Milecia McGregor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Pearson</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 video file (8 hr., 15 min.))</subfield><subfield code="b">sound, color.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title details screen (O'Reilly, viewed May 7, 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Learn MLOps for Machine Learning - With both machine learning and DevOps at the forefront these days, Milecia McGregor helps engineers understand how to apply key DevOps principles to their machine learning projects. When teams are working with machine learning models, changing features, different data sets, new algorithms, and unique computing resources all influence a machine learning model's performance. Tracking all of these items can be complicated. With tools such as DVC, MLFlow, AWS, you can meet the challenge. Milecia McGregor demonstrates how to use MLOps tools to improve machine learning and automate some of the steps in the process. In Securing Your DevOps Pipelines: DevSecOps Best Practices, Milecia covers how DevSecOps improves upon regular DevOps pipelines. She covers the tools and methodologies you can use to bring DevSecOps to your organization. By the end of the course, you will know how to build a DevSecOps pipeline and how to integrate different tools to handle the OWASP Top Ten, as well as compliance checks to stay up to date with regulations like HIPAA, PCI, and GDPR.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer software</subfield><subfield code="x">Development</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Instructional films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonfiction films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet videos</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGregor, Milecia</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Pearson (Firm),</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780135358856/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-103622209 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:25:17Z |
institution | BVB |
isbn | 9780135358856 013535885X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 video file (8 hr., 15 min.)) sound, color. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Pearson |
record_format | marc |
spelling | DevOps tools and principles (video collection) Milecia McGregor [First edition]. [Place of publication not identified] Pearson [2024] 1 Online-Ressource (1 video file (8 hr., 15 min.)) sound, color. zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title details screen (O'Reilly, viewed May 7, 2024) Learn MLOps for Machine Learning - With both machine learning and DevOps at the forefront these days, Milecia McGregor helps engineers understand how to apply key DevOps principles to their machine learning projects. When teams are working with machine learning models, changing features, different data sets, new algorithms, and unique computing resources all influence a machine learning model's performance. Tracking all of these items can be complicated. With tools such as DVC, MLFlow, AWS, you can meet the challenge. Milecia McGregor demonstrates how to use MLOps tools to improve machine learning and automate some of the steps in the process. In Securing Your DevOps Pipelines: DevSecOps Best Practices, Milecia covers how DevSecOps improves upon regular DevOps pipelines. She covers the tools and methodologies you can use to bring DevSecOps to your organization. By the end of the course, you will know how to build a DevSecOps pipeline and how to integrate different tools to handle the OWASP Top Ten, as well as compliance checks to stay up to date with regulations like HIPAA, PCI, and GDPR. Computer software Development Machine learning Instructional films Nonfiction films Internet videos McGregor, Milecia MitwirkendeR ctb Pearson (Firm), Verlag pbl |
spellingShingle | DevOps tools and principles (video collection) Computer software Development Machine learning Instructional films Nonfiction films Internet videos |
title | DevOps tools and principles (video collection) |
title_auth | DevOps tools and principles (video collection) |
title_exact_search | DevOps tools and principles (video collection) |
title_full | DevOps tools and principles (video collection) Milecia McGregor |
title_fullStr | DevOps tools and principles (video collection) Milecia McGregor |
title_full_unstemmed | DevOps tools and principles (video collection) Milecia McGregor |
title_short | DevOps tools and principles (video collection) |
title_sort | devops tools and principles video collection |
topic | Computer software Development Machine learning Instructional films Nonfiction films Internet videos |
topic_facet | Computer software Development Machine learning Instructional films Nonfiction films Internet videos |
work_keys_str_mv | AT mcgregormilecia devopstoolsandprinciplesvideocollection AT pearsonfirm devopstoolsandprinciplesvideocollection |