Python dēta saiensu handobukku: Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook :
Pythonデータサイエンスハンドブック : Jupyter, NumPy, pandas, Matplotlib, scikit-learnを使ったデータ分析, 機械学習 /
Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all;...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Electronic eBook |
Language: | Japanese |
Published: |
Tōkyō-to Shinjuku-ku
Orairī Japan
2024
|
Edition: | Dai 2-han. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9784814400638/?ar |
Summary: | Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all;Python, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how: IPython and Jupyter provide computational environments for scientists using Python NumPy includes the ndarray for efficient storage and manipulation of dense data arrays Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data Matplotlib includes capabilities for a flexible range of data visualizations Scikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms. |
Item Description: | Includes bibliographical references and index |
Physical Description: | 1 Online-Ressource (576 Seiten) |
ISBN: | 9784814400638 4814400632 |
Staff View
MARC
LEADER | 00000nam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-102562946 | ||
003 | DE-627-1 | ||
005 | 20240429114544.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240429s2024 xx |||||o 00| ||jpn c | ||
020 | |a 9784814400638 |c electronic bk. |9 978-4-8144-0063-8 | ||
020 | |a 4814400632 |c electronic bk. |9 4-8144-0063-2 | ||
035 | |a (DE-627-1)102562946 | ||
035 | |a (DE-599)KEP102562946 | ||
035 | |a (ORHE)9784814400638 | ||
035 | |a (DE-627-1)102562946 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a jpn | ||
082 | 0 | |a 006.3/12 |2 23/eng/20240401 | |
100 | 1 | |a Vanderplas, Jacob T. |e VerfasserIn |4 aut | |
240 | 1 | 0 | |a Python data science handbook |
245 | 1 | 0 | |6 880-01 |a Python dēta saiensu handobukku |b Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : |c Jake VanderPlas cho ; Kikuchi Akira yaku = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas |
246 | 3 | 1 | |a Python data science handbook : |
250 | |6 880-02 |a Dai 2-han. | ||
264 | 1 | |6 880-03 |a Tōkyō-to Shinjuku-ku |b Orairī Japan |c 2024 | |
300 | |a 1 Online-Ressource (576 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all;Python, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how: IPython and Jupyter provide computational environments for scientists using Python NumPy includes the ndarray for efficient storage and manipulation of dense data arrays Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data Matplotlib includes capabilities for a flexible range of data visualizations Scikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms. | ||
546 | |a In Japanese. | ||
650 | 0 | |a Python (Computer program language) |v Handbooks, manuals, etc | |
650 | 0 | |a Data mining |v Handbooks, manuals, etc |x Statistical methods | |
650 | 0 | |a Electronic data processing |v Handbooks, manuals, etc | |
650 | 4 | |a Python (Langage de programmation) ; Guides, manuels, etc | |
700 | 1 | |a Kikuchi, Akira |e ÜbersetzerIn |4 trl | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9784814400638/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
880 | 1 | 0 | |6 245-01/Chin |a Pythonデータサイエンスハンドブック : |b Jupyter, NumPy, pandas, Matplotlib, scikit-learnを使ったデータ分析, 機械学習 / |c Jake VanderPlas著 ; 菊池彰訳 = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas. |
880 | |6 250-02/Chin |a 第 2版. | ||
880 | 1 | |6 264-03/Chin |a 東京都新宿区 |b オライリー・ジャパン |c 2024 | |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-102562946 |
---|---|
_version_ | 1831287147156471808 |
adam_text | |
any_adam_object | |
author | Vanderplas, Jacob T. |
author2 | Kikuchi, Akira |
author2_role | trl |
author2_variant | a k ak |
author_facet | Vanderplas, Jacob T. Kikuchi, Akira |
author_role | aut |
author_sort | Vanderplas, Jacob T. |
author_variant | j t v jt jtv |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)102562946 (DE-599)KEP102562946 (ORHE)9784814400638 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Dai 2-han. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03693nam a22004812c 4500</leader><controlfield tag="001">ZDB-30-ORH-102562946</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240429114544.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240429s2024 xx |||||o 00| ||jpn c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9784814400638</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-4-8144-0063-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">4814400632</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">4-8144-0063-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102562946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP102562946</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9784814400638</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)102562946</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">jpn</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23/eng/20240401</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vanderplas, Jacob T.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Python data science handbook</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="6">880-01</subfield><subfield code="a">Python dēta saiensu handobukku</subfield><subfield code="b">Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook :</subfield><subfield code="c">Jake VanderPlas cho ; Kikuchi Akira yaku = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas</subfield></datafield><datafield tag="246" ind1="3" ind2="1"><subfield code="a">Python data science handbook :</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="6">880-02</subfield><subfield code="a">Dai 2-han.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="6">880-03</subfield><subfield code="a">Tōkyō-to Shinjuku-ku</subfield><subfield code="b">Orairī Japan</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (576 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all;Python, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how: IPython and Jupyter provide computational environments for scientists using Python NumPy includes the ndarray for efficient storage and manipulation of dense data arrays Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data Matplotlib includes capabilities for a flexible range of data visualizations Scikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In Japanese.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield><subfield code="v">Handbooks, manuals, etc</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electronic data processing</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation) ; Guides, manuels, etc</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kikuchi, Akira</subfield><subfield code="e">ÜbersetzerIn</subfield><subfield code="4">trl</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9784814400638/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="1" ind2="0"><subfield code="6">245-01/Chin</subfield><subfield code="a">Pythonデータサイエンスハンドブック :</subfield><subfield code="b">Jupyter, NumPy, pandas, Matplotlib, scikit-learnを使ったデータ分析, 機械学習 /</subfield><subfield code="c">Jake VanderPlas著 ; 菊池彰訳 = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas.</subfield></datafield><datafield tag="880" ind1=" " ind2=" "><subfield code="6">250-02/Chin</subfield><subfield code="a">第 2版.</subfield></datafield><datafield tag="880" ind1=" " ind2="1"><subfield code="6">264-03/Chin</subfield><subfield code="a">東京都新宿区</subfield><subfield code="b">オライリー・ジャパン</subfield><subfield code="c">2024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-102562946 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:25:18Z |
institution | BVB |
isbn | 9784814400638 4814400632 |
language | Japanese |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (576 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Orairī Japan |
record_format | marc |
spelling | Vanderplas, Jacob T. VerfasserIn aut Python data science handbook 880-01 Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : Jake VanderPlas cho ; Kikuchi Akira yaku = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas Python data science handbook : 880-02 Dai 2-han. 880-03 Tōkyō-to Shinjuku-ku Orairī Japan 2024 1 Online-Ressource (576 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all;Python, NumPy, pandas, Matplotlib, scikit-learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how: IPython and Jupyter provide computational environments for scientists using Python NumPy includes the ndarray for efficient storage and manipulation of dense data arrays Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data Matplotlib includes capabilities for a flexible range of data visualizations Scikit-learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms. In Japanese. Python (Computer program language) Handbooks, manuals, etc Data mining Handbooks, manuals, etc Statistical methods Electronic data processing Handbooks, manuals, etc Python (Langage de programmation) ; Guides, manuels, etc Kikuchi, Akira ÜbersetzerIn trl 245-01/Chin Pythonデータサイエンスハンドブック : Jupyter, NumPy, pandas, Matplotlib, scikit-learnを使ったデータ分析, 機械学習 / Jake VanderPlas著 ; 菊池彰訳 = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas. 250-02/Chin 第 2版. 264-03/Chin 東京都新宿区 オライリー・ジャパン 2024 |
spellingShingle | Vanderplas, Jacob T. Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : Python (Computer program language) Handbooks, manuals, etc Data mining Handbooks, manuals, etc Statistical methods Electronic data processing Handbooks, manuals, etc Python (Langage de programmation) ; Guides, manuels, etc |
title | Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : |
title_alt | Python data science handbook Python data science handbook : |
title_auth | Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : |
title_exact_search | Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : |
title_full | Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : Jake VanderPlas cho ; Kikuchi Akira yaku = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas |
title_fullStr | Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : Jake VanderPlas cho ; Kikuchi Akira yaku = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas |
title_full_unstemmed | Python dēta saiensu handobukku Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : Jake VanderPlas cho ; Kikuchi Akira yaku = Python data science handbook : essential tools for working with data : second edition / Jake VanderPlas |
title_short | Python dēta saiensu handobukku |
title_sort | python deta saiensu handobukku jupyter numpy pandas matplotlib scikit learn o tsukatta deta bunseki kikai gakushu python data science handbook |
title_sub | Jupyter, NumPy, pandas, Matplotlib, scikit-learn o tsukatta dēta bunseki, kikai gakushū / = Python data science handbook : |
topic | Python (Computer program language) Handbooks, manuals, etc Data mining Handbooks, manuals, etc Statistical methods Electronic data processing Handbooks, manuals, etc Python (Langage de programmation) ; Guides, manuels, etc |
topic_facet | Python (Computer program language) Handbooks, manuals, etc Data mining Handbooks, manuals, etc Statistical methods Electronic data processing Handbooks, manuals, etc Python (Langage de programmation) ; Guides, manuels, etc |
work_keys_str_mv | AT vanderplasjacobt pythondatasciencehandbook AT kikuchiakira pythondatasciencehandbook AT vanderplasjacobt pythondetasaiensuhandobukkujupyternumpypandasmatplotlibscikitlearnotsukattadetabunsekikikaigakushupythondatasciencehandbook AT kikuchiakira pythondetasaiensuhandobukkujupyternumpypandasmatplotlibscikitlearnotsukattadetabunsekikikaigakushupythondatasciencehandbook |