Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Cambridge, Massachusetts]
MIT Sloan Management Review
2023
|
Ausgabe: | [First edition]. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/53863MIT65303/?ar |
Zusammenfassung: | Today's senior business managers have the power - and the responsibility - to prevent AI project failures. But in order to do so, they need to know how to evaluate the data sets and models being used. This article offers a framework for identifying the right data set for your business problem and suggests six tough questions to ask developers before and during the deployment of artificial intelligence models. |
Beschreibung: | Reprint #65303 |
Umfang: | 1 online resource (7 pages) illustrations |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-10039647X | ||
003 | DE-627-1 | ||
005 | 20240228122128.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240129s2023 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)10039647X | ||
035 | |a (DE-599)KEP10039647X | ||
035 | |a (ORHE)53863MIT65303 | ||
035 | |a (DE-627-1)10039647X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3 |2 23/eng/20240116 | |
100 | 1 | |a Hoerl, Roger W. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a What managers should ask about AI models and data sets |c by Roger W. Hoerl, Thomas C. Redman |
250 | |a [First edition]. | ||
264 | 1 | |a [Cambridge, Massachusetts] |b MIT Sloan Management Review |c 2023 | |
300 | |a 1 online resource (7 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Reprint #65303 | ||
520 | |a Today's senior business managers have the power - and the responsibility - to prevent AI project failures. But in order to do so, they need to know how to evaluate the data sets and models being used. This article offers a framework for identifying the right data set for your business problem and suggests six tough questions to ask developers before and during the deployment of artificial intelligence models. | ||
650 | 0 | |a Artificial intelligence |x Data processing | |
650 | 0 | |a Data sets | |
650 | 4 | |a Intelligence artificielle ; Informatique | |
650 | 4 | |a Jeux de données | |
700 | 1 | |a Redman, Thomas C. |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/53863MIT65303/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-10039647X |
---|---|
_version_ | 1833357140827308032 |
adam_text | |
any_adam_object | |
author | Hoerl, Roger W. Redman, Thomas C. |
author_facet | Hoerl, Roger W. Redman, Thomas C. |
author_role | aut aut |
author_sort | Hoerl, Roger W. |
author_variant | r w h rw rwh t c r tc tcr |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)10039647X (DE-599)KEP10039647X (ORHE)53863MIT65303 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01729cam a22003852c 4500</leader><controlfield tag="001">ZDB-30-ORH-10039647X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122128.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240129s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10039647X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP10039647X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)53863MIT65303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10039647X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23/eng/20240116</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hoerl, Roger W.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What managers should ask about AI models and data sets</subfield><subfield code="c">by Roger W. Hoerl, Thomas C. Redman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cambridge, Massachusetts]</subfield><subfield code="b">MIT Sloan Management Review</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (7 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reprint #65303</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Today's senior business managers have the power - and the responsibility - to prevent AI project failures. But in order to do so, they need to know how to evaluate the data sets and models being used. This article offers a framework for identifying the right data set for your business problem and suggests six tough questions to ask developers before and during the deployment of artificial intelligence models.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jeux de données</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Redman, Thomas C.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/53863MIT65303/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-10039647X |
illustrated | Illustrated |
indexdate | 2025-05-28T09:46:57Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (7 pages) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | MIT Sloan Management Review |
record_format | marc |
spelling | Hoerl, Roger W. VerfasserIn aut What managers should ask about AI models and data sets by Roger W. Hoerl, Thomas C. Redman [First edition]. [Cambridge, Massachusetts] MIT Sloan Management Review 2023 1 online resource (7 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reprint #65303 Today's senior business managers have the power - and the responsibility - to prevent AI project failures. But in order to do so, they need to know how to evaluate the data sets and models being used. This article offers a framework for identifying the right data set for your business problem and suggests six tough questions to ask developers before and during the deployment of artificial intelligence models. Artificial intelligence Data processing Data sets Intelligence artificielle ; Informatique Jeux de données Redman, Thomas C. VerfasserIn aut |
spellingShingle | Hoerl, Roger W. Redman, Thomas C. What managers should ask about AI models and data sets Artificial intelligence Data processing Data sets Intelligence artificielle ; Informatique Jeux de données |
title | What managers should ask about AI models and data sets |
title_auth | What managers should ask about AI models and data sets |
title_exact_search | What managers should ask about AI models and data sets |
title_full | What managers should ask about AI models and data sets by Roger W. Hoerl, Thomas C. Redman |
title_fullStr | What managers should ask about AI models and data sets by Roger W. Hoerl, Thomas C. Redman |
title_full_unstemmed | What managers should ask about AI models and data sets by Roger W. Hoerl, Thomas C. Redman |
title_short | What managers should ask about AI models and data sets |
title_sort | what managers should ask about ai models and data sets |
topic | Artificial intelligence Data processing Data sets Intelligence artificielle ; Informatique Jeux de données |
topic_facet | Artificial intelligence Data processing Data sets Intelligence artificielle ; Informatique Jeux de données |
work_keys_str_mv | AT hoerlrogerw whatmanagersshouldaskaboutaimodelsanddatasets AT redmanthomasc whatmanagersshouldaskaboutaimodelsanddatasets |