Synthetic data and generative AI:
Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, r...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, MA
Morgan Kaufmann
2024
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780443218569/?ar |
Zusammenfassung: | Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, regression techniques - including logistic and Lasso - are presented as a single method, without using advanced linear algebra. Confidence regions and prediction intervals are built using parametric bootstrap, without statistical models or probability distributions. Models (including generative models and mixtures) are mostly used to create rich synthetic data to test and benchmark various methods. Emphasizes numerical stability and performance of algorithms (computational complexity) Focuses on explainable AI/interpretable machine learning, with heavy use of synthetic data and generative models, a new trend in the field Includes new, easier construction of confidence regions, without statistics, a simple alternative to the powerful, well-known XGBoost technique Covers automation of data cleaning, favoring easier solutions when possible Includes chapters dedicated fully to synthetic data applications: fractal-like terrain generation with the diamond-square algorithm, and synthetic star clusters evolving over time and bound by gravity. |
Umfang: | 1 Online-Ressource |
ISBN: | 9780443218569 0443218560 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-10039633X | ||
003 | DE-627-1 | ||
005 | 20240228122127.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240129s2024 xx |||||o 00| ||eng c | ||
020 | |a 9780443218569 |c electronic book |9 978-0-443-21856-9 | ||
020 | |a 0443218560 |c electronic book |9 0-443-21856-0 | ||
035 | |a (DE-627-1)10039633X | ||
035 | |a (DE-599)KEP10039633X | ||
035 | |a (ORHE)9780443218569 | ||
035 | |a (DE-627-1)10039633X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20240116 | |
100 | 1 | |a Granville, Vincent |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Synthetic data and generative AI |c Vincent Granville |
264 | 1 | |a Cambridge, MA |b Morgan Kaufmann |c 2024 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, regression techniques - including logistic and Lasso - are presented as a single method, without using advanced linear algebra. Confidence regions and prediction intervals are built using parametric bootstrap, without statistical models or probability distributions. Models (including generative models and mixtures) are mostly used to create rich synthetic data to test and benchmark various methods. Emphasizes numerical stability and performance of algorithms (computational complexity) Focuses on explainable AI/interpretable machine learning, with heavy use of synthetic data and generative models, a new trend in the field Includes new, easier construction of confidence regions, without statistics, a simple alternative to the powerful, well-known XGBoost technique Covers automation of data cleaning, favoring easier solutions when possible Includes chapters dedicated fully to synthetic data applications: fractal-like terrain generation with the diamond-square algorithm, and synthetic star clusters evolving over time and bound by gravity. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Computer vision | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Vision par ordinateur | |
650 | 4 | |a artificial intelligence | |
776 | 1 | |z 0443218579 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0443218579 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780443218569/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-10039633X |
---|---|
_version_ | 1829007841146437632 |
adam_text | |
any_adam_object | |
author | Granville, Vincent |
author_facet | Granville, Vincent |
author_role | aut |
author_sort | Granville, Vincent |
author_variant | v g vg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)10039633X (DE-599)KEP10039633X (ORHE)9780443218569 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02773cam a22004332c 4500</leader><controlfield tag="001">ZDB-30-ORH-10039633X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122127.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240129s2024 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780443218569</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-0-443-21856-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0443218560</subfield><subfield code="c">electronic book</subfield><subfield code="9">0-443-21856-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10039633X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP10039633X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780443218569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)10039633X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20240116</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Granville, Vincent</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Synthetic data and generative AI</subfield><subfield code="c">Vincent Granville</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, MA</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, regression techniques - including logistic and Lasso - are presented as a single method, without using advanced linear algebra. Confidence regions and prediction intervals are built using parametric bootstrap, without statistical models or probability distributions. Models (including generative models and mixtures) are mostly used to create rich synthetic data to test and benchmark various methods. Emphasizes numerical stability and performance of algorithms (computational complexity) Focuses on explainable AI/interpretable machine learning, with heavy use of synthetic data and generative models, a new trend in the field Includes new, easier construction of confidence regions, without statistics, a simple alternative to the powerful, well-known XGBoost technique Covers automation of data cleaning, favoring easier solutions when possible Includes chapters dedicated fully to synthetic data applications: fractal-like terrain generation with the diamond-square algorithm, and synthetic star clusters evolving over time and bound by gravity.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vision par ordinateur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">0443218579</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0443218579</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780443218569/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-10039633X |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:36:42Z |
institution | BVB |
isbn | 9780443218569 0443218560 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Morgan Kaufmann |
record_format | marc |
spelling | Granville, Vincent VerfasserIn aut Synthetic data and generative AI Vincent Granville Cambridge, MA Morgan Kaufmann 2024 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Synthetic Data and Generative AI covers the foundations of machine learning, with modern approaches to solving complex problems and the systematic generation and use of synthetic data. Emphasis is on scalability, automation, testing, optimizing, and interpretability (explainable AI). For instance, regression techniques - including logistic and Lasso - are presented as a single method, without using advanced linear algebra. Confidence regions and prediction intervals are built using parametric bootstrap, without statistical models or probability distributions. Models (including generative models and mixtures) are mostly used to create rich synthetic data to test and benchmark various methods. Emphasizes numerical stability and performance of algorithms (computational complexity) Focuses on explainable AI/interpretable machine learning, with heavy use of synthetic data and generative models, a new trend in the field Includes new, easier construction of confidence regions, without statistics, a simple alternative to the powerful, well-known XGBoost technique Covers automation of data cleaning, favoring easier solutions when possible Includes chapters dedicated fully to synthetic data applications: fractal-like terrain generation with the diamond-square algorithm, and synthetic star clusters evolving over time and bound by gravity. Machine learning Artificial intelligence Computer vision Apprentissage automatique Intelligence artificielle Vision par ordinateur artificial intelligence 0443218579 Erscheint auch als Druck-Ausgabe 0443218579 |
spellingShingle | Granville, Vincent Synthetic data and generative AI Machine learning Artificial intelligence Computer vision Apprentissage automatique Intelligence artificielle Vision par ordinateur artificial intelligence |
title | Synthetic data and generative AI |
title_auth | Synthetic data and generative AI |
title_exact_search | Synthetic data and generative AI |
title_full | Synthetic data and generative AI Vincent Granville |
title_fullStr | Synthetic data and generative AI Vincent Granville |
title_full_unstemmed | Synthetic data and generative AI Vincent Granville |
title_short | Synthetic data and generative AI |
title_sort | synthetic data and generative ai |
topic | Machine learning Artificial intelligence Computer vision Apprentissage automatique Intelligence artificielle Vision par ordinateur artificial intelligence |
topic_facet | Machine learning Artificial intelligence Computer vision Apprentissage automatique Intelligence artificielle Vision par ordinateur artificial intelligence |
work_keys_str_mv | AT granvillevincent syntheticdataandgenerativeai |