The working limitations of large language models:
Large language models (LLMs) can generate convincingly human-sounding responses to queries. This ability can lead users to mistakenly attribute certain human capabilities to these artificial intelligence algorithms, namely reasoning, knowledge, understanding, and execution. Understanding how LLMs wo...
Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Cambridge, Massachusetts]
MIT Sloan Management Review
2023
|
Ausgabe: | [First edition]. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/53863MIT65233/?ar |
Zusammenfassung: | Large language models (LLMs) can generate convincingly human-sounding responses to queries. This ability can lead users to mistakenly attribute certain human capabilities to these artificial intelligence algorithms, namely reasoning, knowledge, understanding, and execution. Understanding how LLMs work and what their limitations are can help users identify where generative AI technology is best applied and where its outputs might be unreliable. |
Beschreibung: | Reprint #65233 |
Umfang: | 1 Online-Ressource (7 Seiten) |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-100067913 | ||
003 | DE-627-1 | ||
005 | 20240228122119.0 | ||
007 | cr uuu---uuuuu | ||
008 | 240104s2023 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)100067913 | ||
035 | |a (DE-599)KEP100067913 | ||
035 | |a (ORHE)53863MIT65233 | ||
035 | |a (DE-627-1)100067913 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/5 |2 23/eng/20231219 | |
100 | 1 | |a Burtsev, Mikhail |e VerfasserIn |4 aut | |
245 | 1 | 4 | |a The working limitations of large language models |c Mikhail Burtsev, Martin Reeves, Adam Job |
250 | |a [First edition]. | ||
264 | 1 | |a [Cambridge, Massachusetts] |b MIT Sloan Management Review |c 2023 | |
300 | |a 1 Online-Ressource (7 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Reprint #65233 | ||
520 | |a Large language models (LLMs) can generate convincingly human-sounding responses to queries. This ability can lead users to mistakenly attribute certain human capabilities to these artificial intelligence algorithms, namely reasoning, knowledge, understanding, and execution. Understanding how LLMs work and what their limitations are can help users identify where generative AI technology is best applied and where its outputs might be unreliable. | ||
650 | 0 | |a Natural language generation (Computer science) | |
650 | 0 | |a Artificial intelligence |x Computer programs | |
650 | 0 | |a Natural language processing (Computer science) | |
700 | 1 | |a Reeves, Martin |e VerfasserIn |4 aut | |
700 | 1 | |a Job, Adam |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/53863MIT65233/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-100067913 |
---|---|
_version_ | 1821494935655809024 |
adam_text | |
any_adam_object | |
author | Burtsev, Mikhail Reeves, Martin Job, Adam |
author_facet | Burtsev, Mikhail Reeves, Martin Job, Adam |
author_role | aut aut aut |
author_sort | Burtsev, Mikhail |
author_variant | m b mb m r mr a j aj |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)100067913 (DE-599)KEP100067913 (ORHE)53863MIT65233 |
dewey-full | 006.3/5 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/5 |
dewey-search | 006.3/5 |
dewey-sort | 16.3 15 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | [First edition]. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01805cam a22003852 4500</leader><controlfield tag="001">ZDB-30-ORH-100067913</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">240104s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100067913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP100067913</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)53863MIT65233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)100067913</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/5</subfield><subfield code="2">23/eng/20231219</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burtsev, Mikhail</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The working limitations of large language models</subfield><subfield code="c">Mikhail Burtsev, Martin Reeves, Adam Job</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[First edition].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Cambridge, Massachusetts]</subfield><subfield code="b">MIT Sloan Management Review</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (7 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reprint #65233</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Large language models (LLMs) can generate convincingly human-sounding responses to queries. This ability can lead users to mistakenly attribute certain human capabilities to these artificial intelligence algorithms, namely reasoning, knowledge, understanding, and execution. Understanding how LLMs work and what their limitations are can help users identify where generative AI technology is best applied and where its outputs might be unreliable.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language generation (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reeves, Martin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Job, Adam</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/53863MIT65233/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-100067913 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:17Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (7 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | MIT Sloan Management Review |
record_format | marc |
spelling | Burtsev, Mikhail VerfasserIn aut The working limitations of large language models Mikhail Burtsev, Martin Reeves, Adam Job [First edition]. [Cambridge, Massachusetts] MIT Sloan Management Review 2023 1 Online-Ressource (7 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Reprint #65233 Large language models (LLMs) can generate convincingly human-sounding responses to queries. This ability can lead users to mistakenly attribute certain human capabilities to these artificial intelligence algorithms, namely reasoning, knowledge, understanding, and execution. Understanding how LLMs work and what their limitations are can help users identify where generative AI technology is best applied and where its outputs might be unreliable. Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) Reeves, Martin VerfasserIn aut Job, Adam VerfasserIn aut |
spellingShingle | Burtsev, Mikhail Reeves, Martin Job, Adam The working limitations of large language models Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) |
title | The working limitations of large language models |
title_auth | The working limitations of large language models |
title_exact_search | The working limitations of large language models |
title_full | The working limitations of large language models Mikhail Burtsev, Martin Reeves, Adam Job |
title_fullStr | The working limitations of large language models Mikhail Burtsev, Martin Reeves, Adam Job |
title_full_unstemmed | The working limitations of large language models Mikhail Burtsev, Martin Reeves, Adam Job |
title_short | The working limitations of large language models |
title_sort | working limitations of large language models |
topic | Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) |
topic_facet | Natural language generation (Computer science) Artificial intelligence Computer programs Natural language processing (Computer science) |
work_keys_str_mv | AT burtsevmikhail theworkinglimitationsoflargelanguagemodels AT reevesmartin theworkinglimitationsoflargelanguagemodels AT jobadam theworkinglimitationsoflargelanguagemodels AT burtsevmikhail workinglimitationsoflargelanguagemodels AT reevesmartin workinglimitationsoflargelanguagemodels AT jobadam workinglimitationsoflargelanguagemodels |