Debugging machine learning models with Python: develop high-performance, low-bias, and explainable machine learning and deep learning models
Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-perfor...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Birmingham, UK
Packt Publishing Ltd.
2023
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781800208582/?ar |
Zusammenfassung: | Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce. |
Beschreibung: | Includes index |
Umfang: | 1 Online-Ressource illustrations |
ISBN: | 9781800201132 1800201133 9781800208582 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-096663669 | ||
003 | DE-627-1 | ||
005 | 20240228122039.0 | ||
007 | cr uuu---uuuuu | ||
008 | 231006s2023 xx |||||o 00| ||eng c | ||
020 | |a 9781800201132 |c electronic book |9 978-1-80020-113-2 | ||
020 | |a 1800201133 |c electronic book |9 1-80020-113-3 | ||
020 | |a 9781800208582 |9 978-1-80020-858-2 | ||
035 | |a (DE-627-1)096663669 | ||
035 | |a (DE-599)KEP096663669 | ||
035 | |a (ORHE)9781800208582 | ||
035 | |a (DE-627-1)096663669 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.1/4 |2 23/eng/20230926 | |
100 | 1 | |a Madani, Ali |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Debugging machine learning models with Python |b develop high-performance, low-bias, and explainable machine learning and deep learning models |c Ali Madani ; foreword by Stephen MacKinnon |
264 | 1 | |a Birmingham, UK |b Packt Publishing Ltd. |c 2023 | |
300 | |a 1 Online-Ressource |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
520 | |a Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce. | ||
650 | 0 | |a Machine learning |x Computer simulation | |
650 | 0 | |a Debugging in computer science |x Computer programs | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Apprentissage automatique ; Simulation par ordinateur | |
650 | 4 | |a Débogueurs | |
650 | 4 | |a Python (Langage de programmation) | |
700 | 1 | |a MacKinnon, Stephen |e MitwirkendeR |4 ctb | |
776 | 1 | |z 1800208588 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1800208588 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781800208582/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-096663669 |
---|---|
_version_ | 1821494937936461824 |
adam_text | |
any_adam_object | |
author | Madani, Ali |
author2 | MacKinnon, Stephen |
author2_role | ctb |
author2_variant | s m sm |
author_facet | Madani, Ali MacKinnon, Stephen |
author_role | aut |
author_sort | Madani, Ali |
author_variant | a m am |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)096663669 (DE-599)KEP096663669 (ORHE)9781800208582 |
dewey-full | 005.1/4 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.1/4 |
dewey-search | 005.1/4 |
dewey-sort | 15.1 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02903cam a22004572 4500</leader><controlfield tag="001">ZDB-30-ORH-096663669</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228122039.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">231006s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781800201132</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-80020-113-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1800201133</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-80020-113-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781800208582</subfield><subfield code="9">978-1-80020-858-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)096663669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP096663669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781800208582</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)096663669</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.1/4</subfield><subfield code="2">23/eng/20230926</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Madani, Ali</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Debugging machine learning models with Python</subfield><subfield code="b">develop high-performance, low-bias, and explainable machine learning and deep learning models</subfield><subfield code="c">Ali Madani ; foreword by Stephen MacKinnon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing Ltd.</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Debugging in computer science</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique ; Simulation par ordinateur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Débogueurs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">MacKinnon, Stephen</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1800208588</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1800208588</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781800208582/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-096663669 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:22:19Z |
institution | BVB |
isbn | 9781800201132 1800201133 9781800208582 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Packt Publishing Ltd. |
record_format | marc |
spelling | Madani, Ali VerfasserIn aut Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models Ali Madani ; foreword by Stephen MacKinnon Birmingham, UK Packt Publishing Ltd. 2023 1 Online-Ressource illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index Debugging Machine Learning Models with Python is a comprehensive guide that navigates you through the entire spectrum of mastering machine learning, from foundational concepts to advanced techniques. It goes beyond the basics to arm you with the expertise essential for building reliable, high-performance models for industrial applications. Whether you're a data scientist, analyst, machine learning engineer, or Python developer, this book will empower you to design modular systems for data preparation, accurately train and test models, and seamlessly integrate them into larger technologies. By bridging the gap between theory and practice, you'll learn how to evaluate model performance, identify and address issues, and harness recent advancements in deep learning and generative modeling using PyTorch and scikit-learn. Your journey to developing high quality models in practice will also encompass causal and human-in-the-loop modeling and machine learning explainability. With hands-on examples and clear explanations, you'll develop the skills to deliver impactful solutions across domains such as healthcare, finance, and e-commerce. Machine learning Computer simulation Debugging in computer science Computer programs Python (Computer program language) Apprentissage automatique ; Simulation par ordinateur Débogueurs Python (Langage de programmation) MacKinnon, Stephen MitwirkendeR ctb 1800208588 Erscheint auch als Druck-Ausgabe 1800208588 |
spellingShingle | Madani, Ali Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models Machine learning Computer simulation Debugging in computer science Computer programs Python (Computer program language) Apprentissage automatique ; Simulation par ordinateur Débogueurs Python (Langage de programmation) |
title | Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models |
title_auth | Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models |
title_exact_search | Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models |
title_full | Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models Ali Madani ; foreword by Stephen MacKinnon |
title_fullStr | Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models Ali Madani ; foreword by Stephen MacKinnon |
title_full_unstemmed | Debugging machine learning models with Python develop high-performance, low-bias, and explainable machine learning and deep learning models Ali Madani ; foreword by Stephen MacKinnon |
title_short | Debugging machine learning models with Python |
title_sort | debugging machine learning models with python develop high performance low bias and explainable machine learning and deep learning models |
title_sub | develop high-performance, low-bias, and explainable machine learning and deep learning models |
topic | Machine learning Computer simulation Debugging in computer science Computer programs Python (Computer program language) Apprentissage automatique ; Simulation par ordinateur Débogueurs Python (Langage de programmation) |
topic_facet | Machine learning Computer simulation Debugging in computer science Computer programs Python (Computer program language) Apprentissage automatique ; Simulation par ordinateur Débogueurs Python (Langage de programmation) |
work_keys_str_mv | AT madaniali debuggingmachinelearningmodelswithpythondevelophighperformancelowbiasandexplainablemachinelearninganddeeplearningmodels AT mackinnonstephen debuggingmachinelearningmodelswithpythondevelophighperformancelowbiasandexplainablemachinelearninganddeeplearningmodels |