Random Evolutionary Systems: Asymptotic Properties and Large Deviations
Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In R...
Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
London
Wiley-ISTE
2021
|
Edition: | 1st edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781786307521/?ar |
Summary: | Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results. |
Physical Description: | 1 Online-Ressource |
ISBN: | 9781119851240 1119851246 9781786307521 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-089970128 | ||
003 | DE-627-1 | ||
005 | 20240228121447.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230327s2021 xx |||||o 00| ||eng c | ||
020 | |a 9781119851240 |c e-book |9 978-1-119-85124-0 | ||
020 | |a 1119851246 |9 1-119-85124-6 | ||
020 | |a 9781786307521 |9 978-1-78630-752-1 | ||
035 | |a (DE-627-1)089970128 | ||
035 | |a (DE-599)KEP089970128 | ||
035 | |a (ORHE)9781786307521 | ||
035 | |a (DE-627-1)089970128 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 519.5 |2 23 | |
100 | 1 | |a Koroliouk, Dmitri |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Random Evolutionary Systems |b Asymptotic Properties and Large Deviations |c Dmitri Koroliouk, Igor Samoilenko |
250 | |a 1st edition. | ||
264 | 1 | |a London |b Wiley-ISTE |c 2021 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results. | ||
650 | 0 | |a Mathematical statistics |x Asymptotic theory | |
650 | 0 | |a Science |x Mathematical models | |
650 | 4 | |a Statistique mathématique ; Théorie asymptotique | |
650 | 4 | |a Sciences ; Modèles mathématiques | |
650 | 4 | |a Mathematical statistics ; Asymptotic theory | |
650 | 4 | |a Science ; Mathematical models | |
700 | 1 | |a Samoilenko, Igor |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781786307521/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-089970128 |
---|---|
_version_ | 1829007729532862464 |
adam_text | |
any_adam_object | |
author | Koroliouk, Dmitri Samoilenko, Igor |
author_facet | Koroliouk, Dmitri Samoilenko, Igor |
author_role | aut aut |
author_sort | Koroliouk, Dmitri |
author_variant | d k dk i s is |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)089970128 (DE-599)KEP089970128 (ORHE)9781786307521 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02366cam a22004452c 4500</leader><controlfield tag="001">ZDB-30-ORH-089970128</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121447.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230327s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119851240</subfield><subfield code="c">e-book</subfield><subfield code="9">978-1-119-85124-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119851246</subfield><subfield code="9">1-119-85124-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781786307521</subfield><subfield code="9">978-1-78630-752-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)089970128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP089970128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781786307521</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)089970128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koroliouk, Dmitri</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Random Evolutionary Systems</subfield><subfield code="b">Asymptotic Properties and Large Deviations</subfield><subfield code="c">Dmitri Koroliouk, Igor Samoilenko</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Wiley-ISTE</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical statistics</subfield><subfield code="x">Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Science</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistique mathématique ; Théorie asymptotique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sciences ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics ; Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science ; Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samoilenko, Igor</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781786307521/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-089970128 |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:34:56Z |
institution | BVB |
isbn | 9781119851240 1119851246 9781786307521 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley-ISTE |
record_format | marc |
spelling | Koroliouk, Dmitri VerfasserIn aut Random Evolutionary Systems Asymptotic Properties and Large Deviations Dmitri Koroliouk, Igor Samoilenko 1st edition. London Wiley-ISTE 2021 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results. Mathematical statistics Asymptotic theory Science Mathematical models Statistique mathématique ; Théorie asymptotique Sciences ; Modèles mathématiques Mathematical statistics ; Asymptotic theory Science ; Mathematical models Samoilenko, Igor VerfasserIn aut |
spellingShingle | Koroliouk, Dmitri Samoilenko, Igor Random Evolutionary Systems Asymptotic Properties and Large Deviations Mathematical statistics Asymptotic theory Science Mathematical models Statistique mathématique ; Théorie asymptotique Sciences ; Modèles mathématiques Mathematical statistics ; Asymptotic theory Science ; Mathematical models |
title | Random Evolutionary Systems Asymptotic Properties and Large Deviations |
title_auth | Random Evolutionary Systems Asymptotic Properties and Large Deviations |
title_exact_search | Random Evolutionary Systems Asymptotic Properties and Large Deviations |
title_full | Random Evolutionary Systems Asymptotic Properties and Large Deviations Dmitri Koroliouk, Igor Samoilenko |
title_fullStr | Random Evolutionary Systems Asymptotic Properties and Large Deviations Dmitri Koroliouk, Igor Samoilenko |
title_full_unstemmed | Random Evolutionary Systems Asymptotic Properties and Large Deviations Dmitri Koroliouk, Igor Samoilenko |
title_short | Random Evolutionary Systems |
title_sort | random evolutionary systems asymptotic properties and large deviations |
title_sub | Asymptotic Properties and Large Deviations |
topic | Mathematical statistics Asymptotic theory Science Mathematical models Statistique mathématique ; Théorie asymptotique Sciences ; Modèles mathématiques Mathematical statistics ; Asymptotic theory Science ; Mathematical models |
topic_facet | Mathematical statistics Asymptotic theory Science Mathematical models Statistique mathématique ; Théorie asymptotique Sciences ; Modèles mathématiques Mathematical statistics ; Asymptotic theory Science ; Mathematical models |
work_keys_str_mv | AT korolioukdmitri randomevolutionarysystemsasymptoticpropertiesandlargedeviations AT samoilenkoigor randomevolutionarysystemsasymptoticpropertiesandlargedeviations |