HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW: concepts, tools, and techniques to build intelligent systems
Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete exa...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Sebastopol, California]
O'Reilly Media, Inc.
[2022]
|
Ausgabe: | Third edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781098125967/?ar |
Zusammenfassung: | Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning. |
Beschreibung: | Includes index |
Umfang: | 1 Online-Ressource |
ISBN: | 9781098122478 109812247X 9781098122461 1098122461 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-076596133 | ||
003 | DE-627-1 | ||
005 | 20240228121823.0 | ||
007 | cr uuu---uuuuu | ||
008 | 220209s2022 xx |||||o 00| ||eng c | ||
020 | |a 9781098122478 |c electronic bk. |9 978-1-0981-2247-8 | ||
020 | |a 109812247X |c electronic bk. |9 1-0981-2247-X | ||
020 | |a 9781098122461 |c electronic bk. |9 978-1-0981-2246-1 | ||
020 | |a 1098122461 |c electronic bk. |9 1-0981-2246-1 | ||
035 | |a (DE-627-1)076596133 | ||
035 | |a (DE-599)KEP076596133 | ||
035 | |a (ORHE)9781098125967 | ||
035 | |a (DE-627-1)076596133 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20221011 | |
100 | 1 | |a Géron, Aurélien |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW |b concepts, tools, and techniques to build intelligent systems |c Aurélien Géron |
250 | |a Third edition. | ||
264 | 1 | |a [Sebastopol, California] |b O'Reilly Media, Inc. |c [2022] | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
520 | |a Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning. | ||
630 | 2 | 0 | |a TensorFlow |
650 | 0 | |a Machine learning | |
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Python (Computer program language) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
776 | 1 | |z 1098125975 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1098125975 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098125967/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-076596133 |
---|---|
_version_ | 1821494825099198464 |
adam_text | |
any_adam_object | |
author | Géron, Aurélien |
author_facet | Géron, Aurélien |
author_role | aut |
author_sort | Géron, Aurélien |
author_variant | a g ag |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)076596133 (DE-599)KEP076596133 (ORHE)9781098125967 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Third edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03356cam a22005412 4500</leader><controlfield tag="001">ZDB-30-ORH-076596133</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121823.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">220209s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098122478</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-0981-2247-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">109812247X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-0981-2247-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781098122461</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-0981-2246-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1098122461</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-0981-2246-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076596133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076596133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098125967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)076596133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20221011</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Géron, Aurélien</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW</subfield><subfield code="b">concepts, tools, and techniques to build intelligent systems</subfield><subfield code="c">Aurélien Géron</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sebastopol, California]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">TensorFlow</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1098125975</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1098125975</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098125967/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-076596133 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:32Z |
institution | BVB |
isbn | 9781098122478 109812247X 9781098122461 1098122461 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Géron, Aurélien VerfasserIn aut HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems Aurélien Géron Third edition. [Sebastopol, California] O'Reilly Media, Inc. [2022] 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurélien Géron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. Use Scikit-learn to track an example ML project end to end Explore several models, including support vector machines, decision trees, random forests, and ensemble methods Exploit unsupervised learning techniques such as dimensionality reduction, clustering, and anomaly detection Dive into neural net architectures, including convolutional nets, recurrent nets, generative adversarial networks, autoencoders, diffusion models, and transformers Use TensorFlow and Keras to build and train neural nets for computer vision, natural language processing, generative models, and deep reinforcement learning. TensorFlow Machine learning Artificial intelligence Python (Computer program language) Apprentissage automatique Intelligence artificielle Python (Langage de programmation) artificial intelligence 1098125975 Erscheint auch als Druck-Ausgabe 1098125975 |
spellingShingle | Géron, Aurélien HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems TensorFlow Machine learning Artificial intelligence Python (Computer program language) Apprentissage automatique Intelligence artificielle Python (Langage de programmation) artificial intelligence |
title | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems |
title_auth | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems |
title_exact_search | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems |
title_full | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems Aurélien Géron |
title_fullStr | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems Aurélien Géron |
title_full_unstemmed | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW concepts, tools, and techniques to build intelligent systems Aurélien Géron |
title_short | HANDS-ON MACHINE LEARNING WITH SCIKIT-LEARN, KERAS, AND TENSORFLOW |
title_sort | hands on machine learning with scikit learn keras and tensorflow concepts tools and techniques to build intelligent systems |
title_sub | concepts, tools, and techniques to build intelligent systems |
topic | TensorFlow Machine learning Artificial intelligence Python (Computer program language) Apprentissage automatique Intelligence artificielle Python (Langage de programmation) artificial intelligence |
topic_facet | TensorFlow Machine learning Artificial intelligence Python (Computer program language) Apprentissage automatique Intelligence artificielle Python (Langage de programmation) artificial intelligence |
work_keys_str_mv | AT geronaurelien handsonmachinelearningwithscikitlearnkerasandtensorflowconceptstoolsandtechniquestobuildintelligentsystems |