Saved in:
Main Authors: | , , , |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
[Sebastopol, California]
O'Reilly Media, Inc.
2022
|
Edition: | 1st edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781492089919/?ar |
Summary: | Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can create artificial data using simulations to train traditional machine learning models. That's just the beginning. With this practical book, you'll explore the possibilities of simulation- and synthesis-based machine learning and AI, with a focus on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. With this deeply practical book, you'll learn how to: Design an approach for solving ML and AI problems using simulations Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization (PPO) and soft actor-critic (SAO) Train ML models locally, concurrently, and in the cloud Use PyTorch, TensorFlow, the Unity ML-Agents and Perception Toolkits to enable ML tools to work with industry-standard game development tools. |
Item Description: | Online resource; Title from title page (viewed March 25, 2022) |
Physical Description: | 1 online resource (331 pages) |
ISBN: | 9781492089896 1492089893 9781492089872 1492089877 1492089915 9781492089919 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-063081393 | ||
003 | DE-627-1 | ||
005 | 20240228121339.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210427s2022 xx |||||o 00| ||eng c | ||
020 | |a 9781492089896 |c electronic book |9 978-1-4920-8989-6 | ||
020 | |a 1492089893 |c electronic book |9 1-4920-8989-3 | ||
020 | |a 9781492089872 |c electronic bk. |9 978-1-4920-8987-2 | ||
020 | |a 1492089877 |c electronic bk. |9 1-4920-8987-7 | ||
020 | |a 1492089915 |9 1-4920-8991-5 | ||
020 | |a 9781492089919 |9 978-1-4920-8991-9 | ||
035 | |a (DE-627-1)063081393 | ||
035 | |a (DE-599)KEP063081393 | ||
035 | |a (ORHE)9781492089919 | ||
035 | |a (DE-627-1)063081393 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23/eng/20220615 | |
100 | 1 | |a Buttfield-Addison, Paris |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Practical Simulations for Machine Learning |c Paris and Mars Buttfield-Addison, Tim Nugent & Jon Manning |
250 | |a 1st edition. | ||
264 | 1 | |a [Sebastopol, California] |b O'Reilly Media, Inc. |c 2022 | |
300 | |a 1 online resource (331 pages) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title page (viewed March 25, 2022) | ||
520 | |a Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can create artificial data using simulations to train traditional machine learning models. That's just the beginning. With this practical book, you'll explore the possibilities of simulation- and synthesis-based machine learning and AI, with a focus on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. With this deeply practical book, you'll learn how to: Design an approach for solving ML and AI problems using simulations Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization (PPO) and soft actor-critic (SAO) Train ML models locally, concurrently, and in the cloud Use PyTorch, TensorFlow, the Unity ML-Agents and Perception Toolkits to enable ML tools to work with industry-standard game development tools. | ||
650 | 0 | |a Machine learning |x Computer simulation | |
650 | 0 | |a Artificial intelligence |x Computer simulation | |
650 | 4 | |a Apprentissage automatique ; Simulation par ordinateur | |
650 | 4 | |a Intelligence artificielle ; Simulation par ordinateur | |
650 | 4 | |a Artificial intelligence ; Computer simulation | |
700 | 1 | |a Manning, Jon |e VerfasserIn |4 aut | |
700 | 1 | |a Buttfield-Addison, Mars |e VerfasserIn |4 aut | |
700 | 1 | |a Nugent, Tim |e VerfasserIn |4 aut | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
776 | 1 | |z 9781492089926 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781492089926 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492089919/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-063081393 |
---|---|
_version_ | 1833357041174839296 |
adam_text | |
any_adam_object | |
author | Buttfield-Addison, Paris Manning, Jon Buttfield-Addison, Mars Nugent, Tim |
author_corporate | Safari, an O'Reilly Media Company |
author_corporate_role | ctb |
author_facet | Buttfield-Addison, Paris Manning, Jon Buttfield-Addison, Mars Nugent, Tim Safari, an O'Reilly Media Company |
author_role | aut aut aut aut |
author_sort | Buttfield-Addison, Paris |
author_variant | p b a pba j m jm m b a mba t n tn |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)063081393 (DE-599)KEP063081393 (ORHE)9781492089919 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03468cam a22005412c 4500</leader><controlfield tag="001">ZDB-30-ORH-063081393</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121339.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210427s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492089896</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-8989-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492089893</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-8989-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492089872</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4920-8987-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492089877</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4920-8987-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492089915</subfield><subfield code="9">1-4920-8991-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492089919</subfield><subfield code="9">978-1-4920-8991-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063081393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP063081393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492089919</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)063081393</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23/eng/20220615</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buttfield-Addison, Paris</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical Simulations for Machine Learning</subfield><subfield code="c">Paris and Mars Buttfield-Addison, Tim Nugent & Jon Manning</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Sebastopol, California]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (331 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title page (viewed March 25, 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can create artificial data using simulations to train traditional machine learning models. That's just the beginning. With this practical book, you'll explore the possibilities of simulation- and synthesis-based machine learning and AI, with a focus on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. With this deeply practical book, you'll learn how to: Design an approach for solving ML and AI problems using simulations Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization (PPO) and soft actor-critic (SAO) Train ML models locally, concurrently, and in the cloud Use PyTorch, TensorFlow, the Unity ML-Agents and Perception Toolkits to enable ML tools to work with industry-standard game development tools.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield><subfield code="x">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique ; Simulation par ordinateur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle ; Simulation par ordinateur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence ; Computer simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manning, Jon</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buttfield-Addison, Mars</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nugent, Tim</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781492089926</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781492089926</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492089919/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-063081393 |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:45:22Z |
institution | BVB |
isbn | 9781492089896 1492089893 9781492089872 1492089877 1492089915 9781492089919 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (331 pages) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Buttfield-Addison, Paris VerfasserIn aut Practical Simulations for Machine Learning Paris and Mars Buttfield-Addison, Tim Nugent & Jon Manning 1st edition. [Sebastopol, California] O'Reilly Media, Inc. 2022 1 online resource (331 pages) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; Title from title page (viewed March 25, 2022) Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can create artificial data using simulations to train traditional machine learning models. That's just the beginning. With this practical book, you'll explore the possibilities of simulation- and synthesis-based machine learning and AI, with a focus on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. With this deeply practical book, you'll learn how to: Design an approach for solving ML and AI problems using simulations Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization (PPO) and soft actor-critic (SAO) Train ML models locally, concurrently, and in the cloud Use PyTorch, TensorFlow, the Unity ML-Agents and Perception Toolkits to enable ML tools to work with industry-standard game development tools. Machine learning Computer simulation Artificial intelligence Computer simulation Apprentissage automatique ; Simulation par ordinateur Intelligence artificielle ; Simulation par ordinateur Artificial intelligence ; Computer simulation Manning, Jon VerfasserIn aut Buttfield-Addison, Mars VerfasserIn aut Nugent, Tim VerfasserIn aut Safari, an O'Reilly Media Company. MitwirkendeR ctb 9781492089926 Erscheint auch als Druck-Ausgabe 9781492089926 |
spellingShingle | Buttfield-Addison, Paris Manning, Jon Buttfield-Addison, Mars Nugent, Tim Practical Simulations for Machine Learning Machine learning Computer simulation Artificial intelligence Computer simulation Apprentissage automatique ; Simulation par ordinateur Intelligence artificielle ; Simulation par ordinateur Artificial intelligence ; Computer simulation |
title | Practical Simulations for Machine Learning |
title_auth | Practical Simulations for Machine Learning |
title_exact_search | Practical Simulations for Machine Learning |
title_full | Practical Simulations for Machine Learning Paris and Mars Buttfield-Addison, Tim Nugent & Jon Manning |
title_fullStr | Practical Simulations for Machine Learning Paris and Mars Buttfield-Addison, Tim Nugent & Jon Manning |
title_full_unstemmed | Practical Simulations for Machine Learning Paris and Mars Buttfield-Addison, Tim Nugent & Jon Manning |
title_short | Practical Simulations for Machine Learning |
title_sort | practical simulations for machine learning |
topic | Machine learning Computer simulation Artificial intelligence Computer simulation Apprentissage automatique ; Simulation par ordinateur Intelligence artificielle ; Simulation par ordinateur Artificial intelligence ; Computer simulation |
topic_facet | Machine learning Computer simulation Artificial intelligence Computer simulation Apprentissage automatique ; Simulation par ordinateur Intelligence artificielle ; Simulation par ordinateur Artificial intelligence ; Computer simulation |
work_keys_str_mv | AT buttfieldaddisonparis practicalsimulationsformachinelearning AT manningjon practicalsimulationsformachinelearning AT buttfieldaddisonmars practicalsimulationsformachinelearning AT nugenttim practicalsimulationsformachinelearning AT safarianoreillymediacompany practicalsimulationsformachinelearning |