Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Berkeley]
Apress
[2021]
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781484265499/?ar |
Summary: | Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. You will: Perform basic data analysis and construct models in scikit-learn and PySpark Train, test, and validate your models (hyperparameter tuning) Know what MLOps is and what an ideal MLOps setup looks like Easily integrate MLFlow into your existing or future projects Deploy your models and perform predictions with them on the cloud. |
Item Description: | Includes index. - Online resource; title from PDF title page (SpringerLink, viewed February 25, 2021) |
Physical Description: | 1 online resource |
ISBN: | 9781484265499 1484265491 1484265505 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-060759321 | ||
003 | DE-627-1 | ||
005 | 20240228121238.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201219s2021 xx |||||o 00| ||eng c | ||
020 | |a 9781484265499 |c electronic bk. |9 978-1-4842-6549-9 | ||
020 | |a 1484265491 |c electronic bk. |9 1-4842-6549-1 | ||
020 | |a 1484265505 |9 1-4842-6550-5 | ||
035 | |a (DE-627-1)060759321 | ||
035 | |a (DE-599)KEP060759321 | ||
035 | |a (ORHE)9781484265499 | ||
035 | |a (DE-627-1)060759321 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a UYQM |2 bicssc | |
072 | 7 | |a COM004000 |2 bisacsh | |
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Alla, Sridhar |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Beginning MLOps with MLFlow |b deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure |c Sridhar Alla, Suman Kalyan Adari |
264 | 1 | |a [Berkeley] |b Apress |c [2021] | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index. - Online resource; title from PDF title page (SpringerLink, viewed February 25, 2021) | ||
520 | |a Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. You will: Perform basic data analysis and construct models in scikit-learn and PySpark Train, test, and validate your models (hyperparameter tuning) Know what MLOps is and what an ideal MLOps setup looks like Easily integrate MLFlow into your existing or future projects Deploy your models and perform predictions with them on the cloud. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Cloud computing | |
650 | 0 | |a Computer software | |
650 | 2 | |a Software | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Infonuagique | |
650 | 4 | |a Logiciels | |
650 | 4 | |a software | |
650 | 4 | |a Cloud computing | |
650 | 4 | |a Computer software | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Adari, Suman Kalyan |e VerfasserIn |4 aut | |
776 | 1 | |z 1484265483 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1484265483 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484265499/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-060759321 |
---|---|
_version_ | 1833357042839977984 |
adam_text | |
any_adam_object | |
author | Alla, Sridhar Adari, Suman Kalyan |
author_facet | Alla, Sridhar Adari, Suman Kalyan |
author_role | aut aut |
author_sort | Alla, Sridhar |
author_variant | s a sa s k a sk ska |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)060759321 (DE-599)KEP060759321 (ORHE)9781484265499 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03346cam a22005652c 4500</leader><controlfield tag="001">ZDB-30-ORH-060759321</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121238.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201219s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484265499</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-6549-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484265491</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-6549-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484265505</subfield><subfield code="9">1-4842-6550-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)060759321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP060759321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484265499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)060759321</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UYQM</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alla, Sridhar</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Beginning MLOps with MLFlow</subfield><subfield code="b">deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure</subfield><subfield code="c">Sridhar Alla, Suman Kalyan Adari</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Berkeley]</subfield><subfield code="b">Apress</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Online resource; title from PDF title page (SpringerLink, viewed February 25, 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. You will: Perform basic data analysis and construct models in scikit-learn and PySpark Train, test, and validate your models (hyperparameter tuning) Know what MLOps is and what an ideal MLOps setup looks like Easily integrate MLFlow into your existing or future projects Deploy your models and perform predictions with them on the cloud.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Software</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infonuagique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logiciels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adari, Suman Kalyan</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484265483</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484265483</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484265499/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-060759321 |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:45:24Z |
institution | BVB |
isbn | 9781484265499 1484265491 1484265505 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Apress |
record_format | marc |
spelling | Alla, Sridhar VerfasserIn aut Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure Sridhar Alla, Suman Kalyan Adari [Berkeley] Apress [2021] 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index. - Online resource; title from PDF title page (SpringerLink, viewed February 25, 2021) Integrate MLOps principles into existing or future projects using MLFlow, operationalize your models, and deploy them in AWS SageMaker, Google Cloud, and Microsoft Azure. This book guides you through the process of data analysis, model construction, and training. The authors begin by introducing you to basic data analysis on a credit card data set and teach you how to analyze the features and their relationships to the target variable. You will learn how to build logistic regression models in scikit-learn and PySpark, and you will go through the process of hyperparameter tuning with a validation data set. You will explore three different deployment setups of machine learning models with varying levels of automation to help you better understand MLOps. MLFlow is covered and you will explore how to integrate MLOps into your existing code, allowing you to easily track metrics, parameters, graphs, and models. You will be guided through the process of deploying and querying your models with AWS SageMaker, Google Cloud, and Microsoft Azure. And you will learn how to integrate your MLOps setups using Databricks. You will: Perform basic data analysis and construct models in scikit-learn and PySpark Train, test, and validate your models (hyperparameter tuning) Know what MLOps is and what an ideal MLOps setup looks like Easily integrate MLFlow into your existing or future projects Deploy your models and perform predictions with them on the cloud. Machine learning Cloud computing Computer software Software Machine Learning Apprentissage automatique Infonuagique Logiciels software Adari, Suman Kalyan VerfasserIn aut 1484265483 Erscheint auch als Druck-Ausgabe 1484265483 |
spellingShingle | Alla, Sridhar Adari, Suman Kalyan Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure Machine learning Cloud computing Computer software Software Machine Learning Apprentissage automatique Infonuagique Logiciels software |
title | Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure |
title_auth | Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure |
title_exact_search | Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure |
title_full | Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure Sridhar Alla, Suman Kalyan Adari |
title_fullStr | Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure Sridhar Alla, Suman Kalyan Adari |
title_full_unstemmed | Beginning MLOps with MLFlow deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure Sridhar Alla, Suman Kalyan Adari |
title_short | Beginning MLOps with MLFlow |
title_sort | beginning mlops with mlflow deploy models in aws sagemaker google cloud and microsoft azure |
title_sub | deploy models in AWS SageMaker, Google Cloud, and Microsoft Azure |
topic | Machine learning Cloud computing Computer software Software Machine Learning Apprentissage automatique Infonuagique Logiciels software |
topic_facet | Machine learning Cloud computing Computer software Software Machine Learning Apprentissage automatique Infonuagique Logiciels software |
work_keys_str_mv | AT allasridhar beginningmlopswithmlflowdeploymodelsinawssagemakergooglecloudandmicrosoftazure AT adarisumankalyan beginningmlopswithmlflowdeploymodelsinawssagemakergooglecloudandmicrosoftazure |