Machine learning for iOS developers:
Harness the power of Apple iOS machine learning (ML) capabilities and learn the concepts and techniques necessary to be a successful Apple iOS machine learning practitioner! Machine earning (ML) is the science of getting computers to act without being explicitly programmed. A branch of Artificial In...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken, NJ
John Wiley And Sons, Inc
2020
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781119602873/?ar |
Zusammenfassung: | Harness the power of Apple iOS machine learning (ML) capabilities and learn the concepts and techniques necessary to be a successful Apple iOS machine learning practitioner! Machine earning (ML) is the science of getting computers to act without being explicitly programmed. A branch of Artificial Intelligence (AI), machine learning techniques offer ways to identify trends, forecast behavior, and make recommendations. The Apple iOS Software Development Kit (SDK) allows developers to integrate ML services, such as speech recognition and language translation, into mobile devices, most of which can be used in multi-cloud settings. Focusing on Apple's ML services, Machine Learning for iOS Developers is an up-to-date introduction to the field, instructing readers to implement machine learning in iOS applications. Assuming no prior experience with machine learning, this reader-friendly guide offers expert instruction and practical examples of ML integration in iOS. Organized into two sections, the book's clearly-written chapters first cover fundamental ML concepts, the different types of ML systems, their practical uses, and the potential challenges of ML solutions. The second section teaches readers to use models'both pre-trained and user-built'with Apple's CoreML framework. Source code examples are provided for readers to download and use in their own projects. This book helps readers: -Understand the theoretical concepts and practical applications of machine learning used in predictive data analytics -Build, deploy, and maintain ML systems for tasks such as model validation, optimization, scalability, and real-time streaming -Develop skills in data acquisition and modeling, classification, and regression.-Compare traditional vs. ML approaches, and machine learning on handsets vs. machine learning as a service (MLaaS) -Implement decision tree based models, an instance-based machine learning system, and integrate Scikit-learn' & Keras models with CoreML Machine Learning for iOS Developers is a must-have resource software engineers and mobile solutions architects wishing to learn ML concepts and implement machine learning on iOS Apps. |
Umfang: | 1 Online-Ressource |
ISBN: | 9781119602910 1119602912 9781119602903 1119602904 9781119602927 1119602920 9781119602873 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-059851317 | ||
003 | DE-627-1 | ||
005 | 20240228121000.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201119s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781119602910 |c electronic bk. |9 978-1-119-60291-0 | ||
020 | |a 1119602912 |c electronic bk. |9 1-119-60291-2 | ||
020 | |a 9781119602903 |c electronic bk. |9 978-1-119-60290-3 | ||
020 | |a 1119602904 |c electronic bk. |9 1-119-60290-4 | ||
020 | |a 9781119602927 |c electronic bk. |9 978-1-119-60292-7 | ||
020 | |a 1119602920 |c electronic bk. |9 1-119-60292-0 | ||
020 | |a 9781119602873 |9 978-1-119-60287-3 | ||
035 | |a (DE-627-1)059851317 | ||
035 | |a (DE-599)KEP059851317 | ||
035 | |a (ORHE)9781119602873 | ||
035 | |a (DE-627-1)059851317 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Mishra, Abhishek |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine learning for iOS developers |c Abhishek Mishra |
264 | 1 | |a Hoboken, NJ |b John Wiley And Sons, Inc |c 2020 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Harness the power of Apple iOS machine learning (ML) capabilities and learn the concepts and techniques necessary to be a successful Apple iOS machine learning practitioner! Machine earning (ML) is the science of getting computers to act without being explicitly programmed. A branch of Artificial Intelligence (AI), machine learning techniques offer ways to identify trends, forecast behavior, and make recommendations. The Apple iOS Software Development Kit (SDK) allows developers to integrate ML services, such as speech recognition and language translation, into mobile devices, most of which can be used in multi-cloud settings. Focusing on Apple's ML services, Machine Learning for iOS Developers is an up-to-date introduction to the field, instructing readers to implement machine learning in iOS applications. Assuming no prior experience with machine learning, this reader-friendly guide offers expert instruction and practical examples of ML integration in iOS. Organized into two sections, the book's clearly-written chapters first cover fundamental ML concepts, the different types of ML systems, their practical uses, and the potential challenges of ML solutions. The second section teaches readers to use models'both pre-trained and user-built'with Apple's CoreML framework. Source code examples are provided for readers to download and use in their own projects. This book helps readers: -Understand the theoretical concepts and practical applications of machine learning used in predictive data analytics -Build, deploy, and maintain ML systems for tasks such as model validation, optimization, scalability, and real-time streaming -Develop skills in data acquisition and modeling, classification, and regression.-Compare traditional vs. ML approaches, and machine learning on handsets vs. machine learning as a service (MLaaS) -Implement decision tree based models, an instance-based machine learning system, and integrate Scikit-learn' & Keras models with CoreML Machine Learning for iOS Developers is a must-have resource software engineers and mobile solutions architects wishing to learn ML concepts and implement machine learning on iOS Apps. | ||
630 | 2 | 0 | |a iOS (Electronic resource) |
650 | 0 | |a Machine learning | |
650 | 0 | |a Computers | |
650 | 2 | |a Computers | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a iOS (Electronic resource) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Ordinateurs | |
650 | 4 | |a computers | |
650 | 4 | |a COMPUTERS ; Machine Theory | |
650 | 4 | |a Computers | |
650 | 4 | |a Machine learning | |
776 | 1 | |z 1119602874 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1119602874 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781119602873/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-059851317 |
---|---|
_version_ | 1821494835962445824 |
adam_text | |
any_adam_object | |
author | Mishra, Abhishek |
author_facet | Mishra, Abhishek |
author_role | aut |
author_sort | Mishra, Abhishek |
author_variant | a m am |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)059851317 (DE-599)KEP059851317 (ORHE)9781119602873 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04035cam a22005652 4500</leader><controlfield tag="001">ZDB-30-ORH-059851317</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121000.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201119s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119602910</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-60291-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119602912</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-119-60291-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119602903</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-60290-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119602904</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-119-60290-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119602927</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-119-60292-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119602920</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-119-60292-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119602873</subfield><subfield code="9">978-1-119-60287-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)059851317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP059851317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119602873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)059851317</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mishra, Abhishek</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning for iOS developers</subfield><subfield code="c">Abhishek Mishra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley And Sons, Inc</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harness the power of Apple iOS machine learning (ML) capabilities and learn the concepts and techniques necessary to be a successful Apple iOS machine learning practitioner! Machine earning (ML) is the science of getting computers to act without being explicitly programmed. A branch of Artificial Intelligence (AI), machine learning techniques offer ways to identify trends, forecast behavior, and make recommendations. The Apple iOS Software Development Kit (SDK) allows developers to integrate ML services, such as speech recognition and language translation, into mobile devices, most of which can be used in multi-cloud settings. Focusing on Apple's ML services, Machine Learning for iOS Developers is an up-to-date introduction to the field, instructing readers to implement machine learning in iOS applications. Assuming no prior experience with machine learning, this reader-friendly guide offers expert instruction and practical examples of ML integration in iOS. Organized into two sections, the book's clearly-written chapters first cover fundamental ML concepts, the different types of ML systems, their practical uses, and the potential challenges of ML solutions. The second section teaches readers to use models'both pre-trained and user-built'with Apple's CoreML framework. Source code examples are provided for readers to download and use in their own projects. This book helps readers: -Understand the theoretical concepts and practical applications of machine learning used in predictive data analytics -Build, deploy, and maintain ML systems for tasks such as model validation, optimization, scalability, and real-time streaming -Develop skills in data acquisition and modeling, classification, and regression.-Compare traditional vs. ML approaches, and machine learning on handsets vs. machine learning as a service (MLaaS) -Implement decision tree based models, an instance-based machine learning system, and integrate Scikit-learn' & Keras models with CoreML Machine Learning for iOS Developers is a must-have resource software engineers and mobile solutions architects wishing to learn ML concepts and implement machine learning on iOS Apps.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">iOS (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iOS (Electronic resource)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinateurs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Machine Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1119602874</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1119602874</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119602873/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-059851317 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:42Z |
institution | BVB |
isbn | 9781119602910 1119602912 9781119602903 1119602904 9781119602927 1119602920 9781119602873 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | John Wiley And Sons, Inc |
record_format | marc |
spelling | Mishra, Abhishek VerfasserIn aut Machine learning for iOS developers Abhishek Mishra Hoboken, NJ John Wiley And Sons, Inc 2020 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Harness the power of Apple iOS machine learning (ML) capabilities and learn the concepts and techniques necessary to be a successful Apple iOS machine learning practitioner! Machine earning (ML) is the science of getting computers to act without being explicitly programmed. A branch of Artificial Intelligence (AI), machine learning techniques offer ways to identify trends, forecast behavior, and make recommendations. The Apple iOS Software Development Kit (SDK) allows developers to integrate ML services, such as speech recognition and language translation, into mobile devices, most of which can be used in multi-cloud settings. Focusing on Apple's ML services, Machine Learning for iOS Developers is an up-to-date introduction to the field, instructing readers to implement machine learning in iOS applications. Assuming no prior experience with machine learning, this reader-friendly guide offers expert instruction and practical examples of ML integration in iOS. Organized into two sections, the book's clearly-written chapters first cover fundamental ML concepts, the different types of ML systems, their practical uses, and the potential challenges of ML solutions. The second section teaches readers to use models'both pre-trained and user-built'with Apple's CoreML framework. Source code examples are provided for readers to download and use in their own projects. This book helps readers: -Understand the theoretical concepts and practical applications of machine learning used in predictive data analytics -Build, deploy, and maintain ML systems for tasks such as model validation, optimization, scalability, and real-time streaming -Develop skills in data acquisition and modeling, classification, and regression.-Compare traditional vs. ML approaches, and machine learning on handsets vs. machine learning as a service (MLaaS) -Implement decision tree based models, an instance-based machine learning system, and integrate Scikit-learn' & Keras models with CoreML Machine Learning for iOS Developers is a must-have resource software engineers and mobile solutions architects wishing to learn ML concepts and implement machine learning on iOS Apps. iOS (Electronic resource) Machine learning Computers Machine Learning Apprentissage automatique Ordinateurs computers COMPUTERS ; Machine Theory 1119602874 Erscheint auch als Druck-Ausgabe 1119602874 |
spellingShingle | Mishra, Abhishek Machine learning for iOS developers iOS (Electronic resource) Machine learning Computers Machine Learning Apprentissage automatique Ordinateurs computers COMPUTERS ; Machine Theory |
title | Machine learning for iOS developers |
title_auth | Machine learning for iOS developers |
title_exact_search | Machine learning for iOS developers |
title_full | Machine learning for iOS developers Abhishek Mishra |
title_fullStr | Machine learning for iOS developers Abhishek Mishra |
title_full_unstemmed | Machine learning for iOS developers Abhishek Mishra |
title_short | Machine learning for iOS developers |
title_sort | machine learning for ios developers |
topic | iOS (Electronic resource) Machine learning Computers Machine Learning Apprentissage automatique Ordinateurs computers COMPUTERS ; Machine Theory |
topic_facet | iOS (Electronic resource) Machine learning Computers Machine Learning Apprentissage automatique Ordinateurs computers COMPUTERS ; Machine Theory |
work_keys_str_mv | AT mishraabhishek machinelearningforiosdevelopers |