Computer Vision: YOLO Custom Object Detection with Colab GPU
Pre-train the Coco dataset and custom-train the coronavirus object detection model with Google Colab GPU About This Video Get started with the YOLO object detection method Build models for recognizing objects in images and real-time webcam videos Learn how to prepare custom datasets for building you...
Gespeichert in:
Beteilige Person: | |
---|---|
Körperschaften: | , |
Format: | Elektronisch Video |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
Packt Publishing
2020
|
Ausgabe: | 1st edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781800563865/?ar |
Zusammenfassung: | Pre-train the Coco dataset and custom-train the coronavirus object detection model with Google Colab GPU About This Video Get started with the YOLO object detection method Build models for recognizing objects in images and real-time webcam videos Learn how to prepare custom datasets for building your own coronavirus detection model In Detail Object detection is a popular application of computer vision, helping a computer recognize and classify objects inside an image. This video course will help you learn Python-based object recognition methods and teach you how to develop custom object detection models. The course starts with an introduction to the YOLO (You Only Look Once) object detection system, Python programming, and convolutional neural networks (CNN). You'll get ready for object detection by installing Anaconda on your computer, and OpenCV library in Python. Next, you'll perform object detection and recognition on a single object in the image and on a real-time webcam video using a YOLO pre-trained model and the Coco dataset. Moving ahead, you'll learn the pros and cons of using a pre-trained dataset model and a custom-trained dataset model, along with exploring the free GPU offered by Google Colab. Toward the end, you'll create a custom dataset and train a darknet YOLO model to detect coronavirus from an electron microscope image or video output. By the end of this video course, you'll have developed the skills you need to build object recognition models using pre-defined and custom datasets. |
Beschreibung: | Online resource; Title from title screen (viewed September 30, 2020) |
Umfang: | 1 Online-Ressource (1 video file, approximately 3 hr., 57 min.) |
ISBN: | 9781800563865 1800563868 |
Internformat
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-059849312 | ||
003 | DE-627-1 | ||
005 | 20240228121304.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 201119s2020 xx ||| |o o ||eng c | ||
020 | |a 9781800563865 |9 978-1-80056-386-5 | ||
020 | |a 1800563868 |9 1-80056-386-8 | ||
035 | |a (DE-627-1)059849312 | ||
035 | |a (DE-599)KEP059849312 | ||
035 | |a (ORHE)9781800563865 | ||
035 | |a (DE-627-1)059849312 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Nelson, Abhilash |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Computer Vision |b YOLO Custom Object Detection with Colab GPU |c Nelson, Abhilash |
250 | |a 1st edition. | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b Packt Publishing |c 2020 | |
300 | |a 1 Online-Ressource (1 video file, approximately 3 hr., 57 min.) | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title screen (viewed September 30, 2020) | ||
520 | |a Pre-train the Coco dataset and custom-train the coronavirus object detection model with Google Colab GPU About This Video Get started with the YOLO object detection method Build models for recognizing objects in images and real-time webcam videos Learn how to prepare custom datasets for building your own coronavirus detection model In Detail Object detection is a popular application of computer vision, helping a computer recognize and classify objects inside an image. This video course will help you learn Python-based object recognition methods and teach you how to develop custom object detection models. The course starts with an introduction to the YOLO (You Only Look Once) object detection system, Python programming, and convolutional neural networks (CNN). You'll get ready for object detection by installing Anaconda on your computer, and OpenCV library in Python. Next, you'll perform object detection and recognition on a single object in the image and on a real-time webcam video using a YOLO pre-trained model and the Coco dataset. Moving ahead, you'll learn the pros and cons of using a pre-trained dataset model and a custom-trained dataset model, along with exploring the free GPU offered by Google Colab. Toward the end, you'll create a custom dataset and train a darknet YOLO model to detect coronavirus from an electron microscope image or video output. By the end of this video course, you'll have developed the skills you need to build object recognition models using pre-defined and custom datasets. | ||
650 | 0 | |a Internet videos | |
650 | 0 | |a Streaming video | |
650 | 4 | |a Vidéos sur Internet | |
650 | 4 | |a Vidéo en continu | |
650 | 4 | |a streaming video | |
650 | 4 | |a Electronic videos | |
710 | 2 | |a O'Reilly for Higher Education (Firm), |e MitwirkendeR |4 ctb | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781800563865/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-059849312 |
---|---|
_version_ | 1821494946348138497 |
adam_text | |
any_adam_object | |
author | Nelson, Abhilash |
author_corporate | O'Reilly for Higher Education (Firm) Safari, an O'Reilly Media Company |
author_corporate_role | ctb ctb |
author_facet | Nelson, Abhilash O'Reilly for Higher Education (Firm) Safari, an O'Reilly Media Company |
author_role | aut |
author_sort | Nelson, Abhilash |
author_variant | a n an |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)059849312 (DE-599)KEP059849312 (ORHE)9781800563865 |
edition | 1st edition. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03151cgm a22004572 4500</leader><controlfield tag="001">ZDB-30-ORH-059849312</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121304.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201119s2020 xx ||| |o o ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781800563865</subfield><subfield code="9">978-1-80056-386-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1800563868</subfield><subfield code="9">1-80056-386-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)059849312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP059849312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781800563865</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)059849312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nelson, Abhilash</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computer Vision</subfield><subfield code="b">YOLO Custom Object Detection with Colab GPU</subfield><subfield code="c">Nelson, Abhilash</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 video file, approximately 3 hr., 57 min.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title screen (viewed September 30, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Pre-train the Coco dataset and custom-train the coronavirus object detection model with Google Colab GPU About This Video Get started with the YOLO object detection method Build models for recognizing objects in images and real-time webcam videos Learn how to prepare custom datasets for building your own coronavirus detection model In Detail Object detection is a popular application of computer vision, helping a computer recognize and classify objects inside an image. This video course will help you learn Python-based object recognition methods and teach you how to develop custom object detection models. The course starts with an introduction to the YOLO (You Only Look Once) object detection system, Python programming, and convolutional neural networks (CNN). You'll get ready for object detection by installing Anaconda on your computer, and OpenCV library in Python. Next, you'll perform object detection and recognition on a single object in the image and on a real-time webcam video using a YOLO pre-trained model and the Coco dataset. Moving ahead, you'll learn the pros and cons of using a pre-trained dataset model and a custom-trained dataset model, along with exploring the free GPU offered by Google Colab. Toward the end, you'll create a custom dataset and train a darknet YOLO model to detect coronavirus from an electron microscope image or video output. By the end of this video course, you'll have developed the skills you need to build object recognition models using pre-defined and custom datasets.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Streaming video</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéo en continu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">streaming video</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic videos</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly for Higher Education (Firm),</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781800563865/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-059849312 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:27Z |
institution | BVB |
isbn | 9781800563865 1800563868 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 video file, approximately 3 hr., 57 min.) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing |
record_format | marc |
spelling | Nelson, Abhilash VerfasserIn aut Computer Vision YOLO Custom Object Detection with Colab GPU Nelson, Abhilash 1st edition. [Erscheinungsort nicht ermittelbar] Packt Publishing 2020 1 Online-Ressource (1 video file, approximately 3 hr., 57 min.) zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; Title from title screen (viewed September 30, 2020) Pre-train the Coco dataset and custom-train the coronavirus object detection model with Google Colab GPU About This Video Get started with the YOLO object detection method Build models for recognizing objects in images and real-time webcam videos Learn how to prepare custom datasets for building your own coronavirus detection model In Detail Object detection is a popular application of computer vision, helping a computer recognize and classify objects inside an image. This video course will help you learn Python-based object recognition methods and teach you how to develop custom object detection models. The course starts with an introduction to the YOLO (You Only Look Once) object detection system, Python programming, and convolutional neural networks (CNN). You'll get ready for object detection by installing Anaconda on your computer, and OpenCV library in Python. Next, you'll perform object detection and recognition on a single object in the image and on a real-time webcam video using a YOLO pre-trained model and the Coco dataset. Moving ahead, you'll learn the pros and cons of using a pre-trained dataset model and a custom-trained dataset model, along with exploring the free GPU offered by Google Colab. Toward the end, you'll create a custom dataset and train a darknet YOLO model to detect coronavirus from an electron microscope image or video output. By the end of this video course, you'll have developed the skills you need to build object recognition models using pre-defined and custom datasets. Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos O'Reilly for Higher Education (Firm), MitwirkendeR ctb Safari, an O'Reilly Media Company. MitwirkendeR ctb |
spellingShingle | Nelson, Abhilash Computer Vision YOLO Custom Object Detection with Colab GPU Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos |
title | Computer Vision YOLO Custom Object Detection with Colab GPU |
title_auth | Computer Vision YOLO Custom Object Detection with Colab GPU |
title_exact_search | Computer Vision YOLO Custom Object Detection with Colab GPU |
title_full | Computer Vision YOLO Custom Object Detection with Colab GPU Nelson, Abhilash |
title_fullStr | Computer Vision YOLO Custom Object Detection with Colab GPU Nelson, Abhilash |
title_full_unstemmed | Computer Vision YOLO Custom Object Detection with Colab GPU Nelson, Abhilash |
title_short | Computer Vision |
title_sort | computer vision yolo custom object detection with colab gpu |
title_sub | YOLO Custom Object Detection with Colab GPU |
topic | Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos |
topic_facet | Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos |
work_keys_str_mv | AT nelsonabhilash computervisionyolocustomobjectdetectionwithcolabgpu AT oreillyforhighereducationfirm computervisionyolocustomobjectdetectionwithcolabgpu AT safarianoreillymediacompany computervisionyolocustomobjectdetectionwithcolabgpu |