Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | Elektronisch E-Book |
Sprache: | Nichtbestimmte Sprache |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
O'Reilly Media, Inc.
2020
|
Links: | https://learning.oreilly.com/library/view/-/9781492091769/?ar |
Zusammenfassung: | As enterprise adoption of AI and machine learning software becomes more commonplace, what does your company need to know to invest wisely in these technologies? In this detailed report, authors Rafael Coss, Dan Darnell, and Patrick Hall provide valuable information to help managers and practitioners make sound decisions for your organization in this commercial landscape. Analytics adoption has driven a wave of digital transformation across industries, but many projects face significant drawbacks. Through the course of this report, you'll examine two of these issues: how the lack of involvement and access by domain experts and end users causes projects to lose focus and why predictive models often end up as services rather than part of new or existing applications. The entire report covers a breadth of topics that include: The converging world of analytics: an up-to-date overview of the AI, ML, and analytics software ecosystem Modern AI applications: anatomy, key components, and detailed examples of the most promising use cases Adoption challenges for next-gen analytics: including organizational, infrastructure, modeling, governance, operational, and social issues Case studies: real-world perspectives from users of modern AI and ML software. |
Beschreibung: | Title from content provider |
Umfang: | 1 online resource |
ISBN: | 9781492091752 1492091758 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-058898980 | ||
003 | DE-627-1 | ||
005 | 20240228121234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201021s2020 xx |||||o 00| ||und c | ||
020 | |a 9781492091752 |9 978-1-4920-9175-2 | ||
020 | |a 1492091758 |9 1-4920-9175-8 | ||
035 | |a (DE-627-1)058898980 | ||
035 | |a (DE-599)KEP058898980 | ||
035 | |a (ORHE)9781492091769 | ||
035 | |a (DE-627-1)058898980 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a und | ||
100 | 1 | |a Coss, Rafael |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Future of Analytics |c Rafael Coss |
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b O'Reilly Media, Inc. |c 2020 | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Title from content provider | ||
520 | |a As enterprise adoption of AI and machine learning software becomes more commonplace, what does your company need to know to invest wisely in these technologies? In this detailed report, authors Rafael Coss, Dan Darnell, and Patrick Hall provide valuable information to help managers and practitioners make sound decisions for your organization in this commercial landscape. Analytics adoption has driven a wave of digital transformation across industries, but many projects face significant drawbacks. Through the course of this report, you'll examine two of these issues: how the lack of involvement and access by domain experts and end users causes projects to lose focus and why predictive models often end up as services rather than part of new or existing applications. The entire report covers a breadth of topics that include: The converging world of analytics: an up-to-date overview of the AI, ML, and analytics software ecosystem Modern AI applications: anatomy, key components, and detailed examples of the most promising use cases Adoption challenges for next-gen analytics: including organizational, infrastructure, modeling, governance, operational, and social issues Case studies: real-world perspectives from users of modern AI and ML software. | ||
700 | 1 | |a Darnell, Dan |e MitwirkendeR |4 ctb | |
700 | 1 | |a Hall, Patrick |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492091769/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-058898980 |
---|---|
_version_ | 1833357043943079936 |
adam_text | |
any_adam_object | |
author | Coss, Rafael |
author2 | Darnell, Dan Hall, Patrick |
author2_role | ctb ctb |
author2_variant | d d dd p h ph |
author_facet | Coss, Rafael Darnell, Dan Hall, Patrick |
author_role | aut |
author_sort | Coss, Rafael |
author_variant | r c rc |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)058898980 (DE-599)KEP058898980 (ORHE)9781492091769 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02422cam a22003612c 4500</leader><controlfield tag="001">ZDB-30-ORH-058898980</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201021s2020 xx |||||o 00| ||und c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492091752</subfield><subfield code="9">978-1-4920-9175-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492091758</subfield><subfield code="9">1-4920-9175-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058898980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP058898980</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492091769</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058898980</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coss, Rafael</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Future of Analytics</subfield><subfield code="c">Rafael Coss</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from content provider</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As enterprise adoption of AI and machine learning software becomes more commonplace, what does your company need to know to invest wisely in these technologies? In this detailed report, authors Rafael Coss, Dan Darnell, and Patrick Hall provide valuable information to help managers and practitioners make sound decisions for your organization in this commercial landscape. Analytics adoption has driven a wave of digital transformation across industries, but many projects face significant drawbacks. Through the course of this report, you'll examine two of these issues: how the lack of involvement and access by domain experts and end users causes projects to lose focus and why predictive models often end up as services rather than part of new or existing applications. The entire report covers a breadth of topics that include: The converging world of analytics: an up-to-date overview of the AI, ML, and analytics software ecosystem Modern AI applications: anatomy, key components, and detailed examples of the most promising use cases Adoption challenges for next-gen analytics: including organizational, infrastructure, modeling, governance, operational, and social issues Case studies: real-world perspectives from users of modern AI and ML software.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Darnell, Dan</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hall, Patrick</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492091769/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-058898980 |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:45:25Z |
institution | BVB |
isbn | 9781492091752 1492091758 |
language | Undetermined |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Coss, Rafael VerfasserIn aut Future of Analytics Rafael Coss [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2020 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Title from content provider As enterprise adoption of AI and machine learning software becomes more commonplace, what does your company need to know to invest wisely in these technologies? In this detailed report, authors Rafael Coss, Dan Darnell, and Patrick Hall provide valuable information to help managers and practitioners make sound decisions for your organization in this commercial landscape. Analytics adoption has driven a wave of digital transformation across industries, but many projects face significant drawbacks. Through the course of this report, you'll examine two of these issues: how the lack of involvement and access by domain experts and end users causes projects to lose focus and why predictive models often end up as services rather than part of new or existing applications. The entire report covers a breadth of topics that include: The converging world of analytics: an up-to-date overview of the AI, ML, and analytics software ecosystem Modern AI applications: anatomy, key components, and detailed examples of the most promising use cases Adoption challenges for next-gen analytics: including organizational, infrastructure, modeling, governance, operational, and social issues Case studies: real-world perspectives from users of modern AI and ML software. Darnell, Dan MitwirkendeR ctb Hall, Patrick MitwirkendeR ctb |
spellingShingle | Coss, Rafael Future of Analytics |
title | Future of Analytics |
title_auth | Future of Analytics |
title_exact_search | Future of Analytics |
title_full | Future of Analytics Rafael Coss |
title_fullStr | Future of Analytics Rafael Coss |
title_full_unstemmed | Future of Analytics Rafael Coss |
title_short | Future of Analytics |
title_sort | future of analytics |
work_keys_str_mv | AT cossrafael futureofanalytics AT darnelldan futureofanalytics AT hallpatrick futureofanalytics |