Machine Learning with Regression in Python: With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks
In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset befor...
Saved in:
Main Author: | |
---|---|
Corporate Authors: | , |
Format: | Electronic Video |
Language: | English |
Published: |
[Place of publication not identified]
Apress
2020
|
Edition: | 1st edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781484265833/?ar |
Summary: | In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset before moving onto model assumptions and feature engineering. We then implement a linear regression, which is a simple model that is easy to interpret, then move through more complex models to see what best makes predictions on our dataset. To avoid overfitting, we split our dataset and to optimize predictions, we tune hyperparameters with k-folds cross validation. We move through models that are more complex until we arrive at a neural network model. We then use the model with the lowest error metrics on the test dataset and make predictions on a new dataset. Using these predictions, we make a recommendation to the company's shareholders who want to expand the business about which counties to expand to next. This modeling process will be done in Python 3 on a Jupyter notebook, so it's a good idea to have Anaconda installed on your computer so you can follow along. We will structure our notebook to be easy-to-read by others on our team who may want to expand on our analysis. What You Will Learn Explore a dataset with Pandas Transform variables in a dataset to account for non-linearities and optimize predictions Tune model hyperparameters and score model performance to determine the best model for a given dataset Use statistical modeling to make recommendations to shareholders Who This Video Is For Software professionals with knowledge of Python basics and data scientists looking to apply data science to industry. |
Item Description: | Online resource; Title from title screen (viewed September 28, 2020) |
Physical Description: | 1 Online-Ressource (1 video file, aSeitenSeitenroximately 45 min.) |
ISBN: | 9781484265833 1484265831 |
Staff View
MARC
LEADER | 00000cgm a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-058896333 | ||
003 | DE-627-1 | ||
005 | 20240228121250.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 201021s2020 xx ||| |o o ||eng c | ||
020 | |a 9781484265833 |9 978-1-4842-6583-3 | ||
020 | |a 1484265831 |9 1-4842-6583-1 | ||
035 | |a (DE-627-1)058896333 | ||
035 | |a (DE-599)KEP058896333 | ||
035 | |a (ORHE)9781484265833 | ||
035 | |a (DE-627-1)058896333 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Keith, Michael |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine Learning with Regression in Python |b With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks |c Keith, Michael |
250 | |a 1st edition. | ||
264 | 1 | |a [Place of publication not identified] |b Apress |c 2020 | |
300 | |a 1 Online-Ressource (1 video file, aSeitenSeitenroximately 45 min.) | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title screen (viewed September 28, 2020) | ||
520 | |a In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset before moving onto model assumptions and feature engineering. We then implement a linear regression, which is a simple model that is easy to interpret, then move through more complex models to see what best makes predictions on our dataset. To avoid overfitting, we split our dataset and to optimize predictions, we tune hyperparameters with k-folds cross validation. We move through models that are more complex until we arrive at a neural network model. We then use the model with the lowest error metrics on the test dataset and make predictions on a new dataset. Using these predictions, we make a recommendation to the company's shareholders who want to expand the business about which counties to expand to next. This modeling process will be done in Python 3 on a Jupyter notebook, so it's a good idea to have Anaconda installed on your computer so you can follow along. We will structure our notebook to be easy-to-read by others on our team who may want to expand on our analysis. What You Will Learn Explore a dataset with Pandas Transform variables in a dataset to account for non-linearities and optimize predictions Tune model hyperparameters and score model performance to determine the best model for a given dataset Use statistical modeling to make recommendations to shareholders Who This Video Is For Software professionals with knowledge of Python basics and data scientists looking to apply data science to industry. | ||
650 | 0 | |a Internet videos | |
650 | 0 | |a Streaming video | |
650 | 4 | |a Vidéos sur Internet | |
650 | 4 | |a Vidéo en continu | |
650 | 4 | |a streaming video | |
650 | 4 | |a Electronic videos | |
710 | 2 | |a O'Reilly for Higher Education (Firm), |e MitwirkendeR |4 ctb | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
776 | 1 | |z 1484265831 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1484265831 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484265833/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-058896333 |
---|---|
_version_ | 1829007852073648128 |
adam_text | |
any_adam_object | |
author | Keith, Michael |
author_corporate | O'Reilly for Higher Education (Firm) Safari, an O'Reilly Media Company |
author_corporate_role | ctb ctb |
author_facet | Keith, Michael O'Reilly for Higher Education (Firm) Safari, an O'Reilly Media Company |
author_role | aut |
author_sort | Keith, Michael |
author_variant | m k mk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)058896333 (DE-599)KEP058896333 (ORHE)9781484265833 |
edition | 1st edition. |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03490cgm a22004812c 4500</leader><controlfield tag="001">ZDB-30-ORH-058896333</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121250.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201021s2020 xx ||| |o o ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484265833</subfield><subfield code="9">978-1-4842-6583-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484265831</subfield><subfield code="9">1-4842-6583-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058896333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP058896333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484265833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058896333</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Keith, Michael</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning with Regression in Python</subfield><subfield code="b">With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks</subfield><subfield code="c">Keith, Michael</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">Apress</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 video file, aSeitenSeitenroximately 45 min.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title screen (viewed September 28, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset before moving onto model assumptions and feature engineering. We then implement a linear regression, which is a simple model that is easy to interpret, then move through more complex models to see what best makes predictions on our dataset. To avoid overfitting, we split our dataset and to optimize predictions, we tune hyperparameters with k-folds cross validation. We move through models that are more complex until we arrive at a neural network model. We then use the model with the lowest error metrics on the test dataset and make predictions on a new dataset. Using these predictions, we make a recommendation to the company's shareholders who want to expand the business about which counties to expand to next. This modeling process will be done in Python 3 on a Jupyter notebook, so it's a good idea to have Anaconda installed on your computer so you can follow along. We will structure our notebook to be easy-to-read by others on our team who may want to expand on our analysis. What You Will Learn Explore a dataset with Pandas Transform variables in a dataset to account for non-linearities and optimize predictions Tune model hyperparameters and score model performance to determine the best model for a given dataset Use statistical modeling to make recommendations to shareholders Who This Video Is For Software professionals with knowledge of Python basics and data scientists looking to apply data science to industry.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet videos</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Streaming video</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéos sur Internet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vidéo en continu</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">streaming video</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic videos</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly for Higher Education (Firm),</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1484265831</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1484265831</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484265833/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-058896333 |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:36:52Z |
institution | BVB |
isbn | 9781484265833 1484265831 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 video file, aSeitenSeitenroximately 45 min.) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress |
record_format | marc |
spelling | Keith, Michael VerfasserIn aut Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks Keith, Michael 1st edition. [Place of publication not identified] Apress 2020 1 Online-Ressource (1 video file, aSeitenSeitenroximately 45 min.) zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; Title from title screen (viewed September 28, 2020) In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset before moving onto model assumptions and feature engineering. We then implement a linear regression, which is a simple model that is easy to interpret, then move through more complex models to see what best makes predictions on our dataset. To avoid overfitting, we split our dataset and to optimize predictions, we tune hyperparameters with k-folds cross validation. We move through models that are more complex until we arrive at a neural network model. We then use the model with the lowest error metrics on the test dataset and make predictions on a new dataset. Using these predictions, we make a recommendation to the company's shareholders who want to expand the business about which counties to expand to next. This modeling process will be done in Python 3 on a Jupyter notebook, so it's a good idea to have Anaconda installed on your computer so you can follow along. We will structure our notebook to be easy-to-read by others on our team who may want to expand on our analysis. What You Will Learn Explore a dataset with Pandas Transform variables in a dataset to account for non-linearities and optimize predictions Tune model hyperparameters and score model performance to determine the best model for a given dataset Use statistical modeling to make recommendations to shareholders Who This Video Is For Software professionals with knowledge of Python basics and data scientists looking to apply data science to industry. Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos O'Reilly for Higher Education (Firm), MitwirkendeR ctb Safari, an O'Reilly Media Company. MitwirkendeR ctb 1484265831 Erscheint auch als Druck-Ausgabe 1484265831 |
spellingShingle | Keith, Michael Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos |
title | Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks |
title_auth | Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks |
title_exact_search | Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks |
title_full | Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks Keith, Michael |
title_fullStr | Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks Keith, Michael |
title_full_unstemmed | Machine Learning with Regression in Python With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks Keith, Michael |
title_short | Machine Learning with Regression in Python |
title_sort | machine learning with regression in python with ordinary least squares ridge decision trees and neural networks |
title_sub | With Ordinary Least Squares, Ridge, Decision Trees and Neural Networks |
topic | Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos |
topic_facet | Internet videos Streaming video Vidéos sur Internet Vidéo en continu streaming video Electronic videos |
work_keys_str_mv | AT keithmichael machinelearningwithregressioninpythonwithordinaryleastsquaresridgedecisiontreesandneuralnetworks AT oreillyforhighereducationfirm machinelearningwithregressioninpythonwithordinaryleastsquaresridgedecisiontreesandneuralnetworks AT safarianoreillymediacompany machinelearningwithregressioninpythonwithordinaryleastsquaresridgedecisiontreesandneuralnetworks |