Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken
For Dummies [Imprint]
Jan. 2020
Hoboken John Wiley & Sons, Incorporated. Jan. 2020 |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781119626114/?ar |
Zusammenfassung: | Your logical, linear guide to the fundamentals of data science programming Data science is exploding-in a good way-with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you're a beginning student or already mid-career, get your copy now and add even more meaning to your life-and everyone else's! |
Umfang: | 1 Online-Ressource (768 p.) |
ISBN: | 9781119626114 1119626110 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-058893016 | ||
003 | DE-627-1 | ||
005 | 20240228121201.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201021s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781119626114 |9 978-1-119-62611-4 | ||
020 | |a 1119626110 |c Trade Paper |9 1-119-62611-0 | ||
035 | |a (DE-627-1)058893016 | ||
035 | |a (DE-599)KEP058893016 | ||
035 | |a (ORHE)9781119626114 | ||
035 | |a (DE-627-1)058893016 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 004 |2 23 | |
100 | 1 | |a Mueller, John Paul |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data Science Programming All-In-One for Dummies |
264 | 1 | |a Hoboken |b For Dummies [Imprint] |c Jan. 2020 | |
264 | 1 | |a Hoboken |b John Wiley & Sons, Incorporated. |c Jan. 2020 | |
300 | |a 1 Online-Ressource (768 p.) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Your logical, linear guide to the fundamentals of data science programming Data science is exploding-in a good way-with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you're a beginning student or already mid-career, get your copy now and add even more meaning to your life-and everyone else's! | ||
650 | 0 | |a Big data |x Statistical methods | |
650 | 0 | |a Big data | |
650 | 0 | |a Computer programming | |
650 | 0 | |a Data mining |x Computer programs | |
650 | 0 | |a Data mining |x Statistical methods | |
650 | 0 | |a Data mining | |
650 | 0 | |a Data structures (Computer science) | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a R (Computer program language) | |
650 | 0 | |a Databases | |
650 | 0 | |a Information retrieval | |
650 | 2 | |a Data Mining | |
650 | 2 | |a Information Storage and Retrieval | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a Bases de données | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Recherche de l'information | |
650 | 4 | |a Technologie de l'information | |
650 | 4 | |a Données volumineuses ; Méthodes statistiques | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Programmation (Informatique) | |
650 | 4 | |a Exploration de données (Informatique) ; Logiciels | |
650 | 4 | |a Structures de données (Informatique) | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a R (Langage de programmation) | |
650 | 4 | |a computer programming | |
650 | 4 | |a databases | |
650 | 4 | |a information retrieval | |
650 | 4 | |a information technology | |
650 | 4 | |a Information retrieval | |
650 | 4 | |a Databases | |
650 | 4 | |a Big data | |
650 | 4 | |a Computer programming | |
650 | 4 | |a Data mining ; Statistical methods | |
650 | 4 | |a Data mining | |
650 | 4 | |a Data structures (Computer science) | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
650 | 4 | |a R (Computer program language) | |
700 | 1 | |a Massaron, Luca |e VerfasserIn |4 aut | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781119626114/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-058893016 |
---|---|
_version_ | 1835903154188713984 |
adam_text | |
any_adam_object | |
author | Mueller, John Paul Massaron, Luca |
author_facet | Mueller, John Paul Massaron, Luca |
author_role | aut aut |
author_sort | Mueller, John Paul |
author_variant | j p m jp jpm l m lm |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)058893016 (DE-599)KEP058893016 (ORHE)9781119626114 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04146cam a22008532c 4500</leader><controlfield tag="001">ZDB-30-ORH-058893016</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121201.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201021s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119626114</subfield><subfield code="9">978-1-119-62611-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119626110</subfield><subfield code="c">Trade Paper</subfield><subfield code="9">1-119-62611-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058893016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP058893016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119626114</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)058893016</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mueller, John Paul</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Science Programming All-In-One for Dummies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">For Dummies [Imprint]</subfield><subfield code="c">Jan. 2020</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken</subfield><subfield code="b">John Wiley & Sons, Incorporated.</subfield><subfield code="c">Jan. 2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (768 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Your logical, linear guide to the fundamentals of data science programming Data science is exploding-in a good way-with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you're a beginning student or already mid-career, get your copy now and add even more meaning to your life-and everyone else's!</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Information Storage and Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recherche de l'information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technologie de l'information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programmation (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique) ; Logiciels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structures de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining ; Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data structures (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Massaron, Luca</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119626114/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-058893016 |
illustrated | Not Illustrated |
indexdate | 2025-06-25T12:14:45Z |
institution | BVB |
isbn | 9781119626114 1119626110 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (768 p.) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | For Dummies [Imprint] John Wiley & Sons, Incorporated. |
record_format | marc |
spelling | Mueller, John Paul VerfasserIn aut Data Science Programming All-In-One for Dummies Hoboken For Dummies [Imprint] Jan. 2020 Hoboken John Wiley & Sons, Incorporated. Jan. 2020 1 Online-Ressource (768 p.) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Your logical, linear guide to the fundamentals of data science programming Data science is exploding-in a good way-with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you're a beginning student or already mid-career, get your copy now and add even more meaning to your life-and everyone else's! Big data Statistical methods Big data Computer programming Data mining Computer programs Data mining Statistical methods Data mining Data structures (Computer science) Machine learning Python (Computer program language) R (Computer program language) Databases Information retrieval Data Mining Information Storage and Retrieval Machine Learning Bases de données Exploration de données (Informatique) Recherche de l'information Technologie de l'information Données volumineuses ; Méthodes statistiques Données volumineuses Programmation (Informatique) Exploration de données (Informatique) ; Logiciels Structures de données (Informatique) Apprentissage automatique Python (Langage de programmation) R (Langage de programmation) computer programming databases information retrieval information technology Data mining ; Statistical methods Massaron, Luca VerfasserIn aut |
spellingShingle | Mueller, John Paul Massaron, Luca Data Science Programming All-In-One for Dummies Big data Statistical methods Big data Computer programming Data mining Computer programs Data mining Statistical methods Data mining Data structures (Computer science) Machine learning Python (Computer program language) R (Computer program language) Databases Information retrieval Data Mining Information Storage and Retrieval Machine Learning Bases de données Exploration de données (Informatique) Recherche de l'information Technologie de l'information Données volumineuses ; Méthodes statistiques Données volumineuses Programmation (Informatique) Exploration de données (Informatique) ; Logiciels Structures de données (Informatique) Apprentissage automatique Python (Langage de programmation) R (Langage de programmation) computer programming databases information retrieval information technology Data mining ; Statistical methods |
title | Data Science Programming All-In-One for Dummies |
title_auth | Data Science Programming All-In-One for Dummies |
title_exact_search | Data Science Programming All-In-One for Dummies |
title_full | Data Science Programming All-In-One for Dummies |
title_fullStr | Data Science Programming All-In-One for Dummies |
title_full_unstemmed | Data Science Programming All-In-One for Dummies |
title_short | Data Science Programming All-In-One for Dummies |
title_sort | data science programming all in one for dummies |
topic | Big data Statistical methods Big data Computer programming Data mining Computer programs Data mining Statistical methods Data mining Data structures (Computer science) Machine learning Python (Computer program language) R (Computer program language) Databases Information retrieval Data Mining Information Storage and Retrieval Machine Learning Bases de données Exploration de données (Informatique) Recherche de l'information Technologie de l'information Données volumineuses ; Méthodes statistiques Données volumineuses Programmation (Informatique) Exploration de données (Informatique) ; Logiciels Structures de données (Informatique) Apprentissage automatique Python (Langage de programmation) R (Langage de programmation) computer programming databases information retrieval information technology Data mining ; Statistical methods |
topic_facet | Big data Statistical methods Big data Computer programming Data mining Computer programs Data mining Statistical methods Data mining Data structures (Computer science) Machine learning Python (Computer program language) R (Computer program language) Databases Information retrieval Data Mining Information Storage and Retrieval Machine Learning Bases de données Exploration de données (Informatique) Recherche de l'information Technologie de l'information Données volumineuses ; Méthodes statistiques Données volumineuses Programmation (Informatique) Exploration de données (Informatique) ; Logiciels Structures de données (Informatique) Apprentissage automatique Python (Langage de programmation) R (Langage de programmation) computer programming databases information retrieval information technology Data mining ; Statistical methods |
work_keys_str_mv | AT muellerjohnpaul datascienceprogrammingallinonefordummies AT massaronluca datascienceprogrammingallinonefordummies |