Self-service AI with Power BI Desktop: machine learning insights for business
This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are avail...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berkeley, CA
Apress L.P.
2020
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484262313/?ar |
Zusammenfassung: | This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. You will: Ask questions in natural language and get answers from your data Let Power BI explain why a certain data point differs from the rest Have Power BI show key influencers over categories of data Access artificial intelligence features available in the Azure cloud Walk the same drill down path in different parts of your hierarchy Load visualizations to add smartness to your reports Simulate changes in data and immediately see the consequences Know your dat a, even before you build your first report Create new columns by giving examples of the data that you need Transform and visualize your data with the help of R and Python scripts. |
Beschreibung: | R Script Visual: Scatter with Spline. - Includes bibliographical references and index. - Print version record |
Umfang: | 1 Online-Ressource (xxiii, 344 Seiten) Illustrationen |
ISBN: | 9781484262313 148426231X |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-056583680 | ||
003 | DE-627-1 | ||
005 | 20240228121144.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200916s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781484262313 |c electronic bk. |9 978-1-4842-6231-3 | ||
020 | |a 148426231X |c electronic bk. |9 1-4842-6231-X | ||
035 | |a (DE-627-1)056583680 | ||
035 | |a (DE-599)KEP056583680 | ||
035 | |a (ORHE)9781484262313 | ||
035 | |a (DE-627-1)056583680 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a UMP |2 bicssc | |
072 | 7 | |a COM051380 |2 bisacsh | |
082 | 0 | |a 650.285/631 |2 23 | |
082 | 0 | |a 004.165 |2 23 | |
100 | 1 | |a Ehrenmueller-Jensen, Markus |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Self-service AI with Power BI Desktop |b machine learning insights for business |c Markus Ehrenmueller-Jensen |
264 | 1 | |a Berkeley, CA |b Apress L.P. |c 2020 | |
300 | |a 1 Online-Ressource (xxiii, 344 Seiten) |b Illustrationen | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a R Script Visual: Scatter with Spline. - Includes bibliographical references and index. - Print version record | ||
520 | |a This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. You will: Ask questions in natural language and get answers from your data Let Power BI explain why a certain data point differs from the rest Have Power BI show key influencers over categories of data Access artificial intelligence features available in the Azure cloud Walk the same drill down path in different parts of your hierarchy Load visualizations to add smartness to your reports Simulate changes in data and immediately see the consequences Know your dat a, even before you build your first report Create new columns by giving examples of the data that you need Transform and visualize your data with the help of R and Python scripts. | ||
630 | 2 | 0 | |a Microsoft .NET Framework |
650 | 0 | |a Business |x Data processing | |
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Computer science | |
650 | 2 | |a Artificial Intelligence | |
650 | 2 | |a Electronic Data Processing | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a Microsoft .NET Framework | |
650 | 4 | |a Gestion ; Informatique | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Informatique | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Computer science | |
650 | 4 | |a Microsoft programming | |
650 | 4 | |a Computers ; Intelligence (AI) & Semantics | |
650 | 4 | |a Computers ; Computer Science | |
650 | 4 | |a Computers ; Programming ; Microsoft Programming | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Business ; Data processing | |
650 | 4 | |a Computer science | |
650 | 4 | |a Machine learning | |
776 | 1 | |z 9781484262306 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484262306 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484262313/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-056583680 |
---|---|
_version_ | 1831287055675555840 |
adam_text | |
any_adam_object | |
author | Ehrenmueller-Jensen, Markus |
author_facet | Ehrenmueller-Jensen, Markus |
author_role | aut |
author_sort | Ehrenmueller-Jensen, Markus |
author_variant | m e j mej |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)056583680 (DE-599)KEP056583680 (ORHE)9781484262313 |
dewey-full | 650.285/631 004.165 |
dewey-hundreds | 600 - Technology (Applied sciences) 000 - Computer science, information, general works |
dewey-ones | 650 - Management and auxiliary services 004 - Computer science |
dewey-raw | 650.285/631 004.165 |
dewey-search | 650.285/631 004.165 |
dewey-sort | 3650.285 3631 |
dewey-tens | 650 - Management and auxiliary services 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04623cam a22006972c 4500</leader><controlfield tag="001">ZDB-30-ORH-056583680</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121144.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200916s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484262313</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-6231-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">148426231X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-6231-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)056583680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP056583680</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484262313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)056583680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UMP</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM051380</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">650.285/631</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.165</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ehrenmueller-Jensen, Markus</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-service AI with Power BI Desktop</subfield><subfield code="b">machine learning insights for business</subfield><subfield code="c">Markus Ehrenmueller-Jensen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress L.P.</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxiii, 344 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">R Script Visual: Scatter with Spline. - Includes bibliographical references and index. - Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. You will: Ask questions in natural language and get answers from your data Let Power BI explain why a certain data point differs from the rest Have Power BI show key influencers over categories of data Access artificial intelligence features available in the Azure cloud Walk the same drill down path in different parts of your hierarchy Load visualizations to add smartness to your reports Simulate changes in data and immediately see the consequences Know your dat a, even before you build your first report Create new columns by giving examples of the data that you need Transform and visualize your data with the help of R and Python scripts.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">Microsoft .NET Framework</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Electronic Data Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft .NET Framework</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gestion ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microsoft programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers ; Intelligence (AI) & Semantics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers ; Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computers ; Programming ; Microsoft Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484262306</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484262306</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484262313/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-056583680 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:23:50Z |
institution | BVB |
isbn | 9781484262313 148426231X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxiii, 344 Seiten) Illustrationen |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress L.P. |
record_format | marc |
spelling | Ehrenmueller-Jensen, Markus VerfasserIn aut Self-service AI with Power BI Desktop machine learning insights for business Markus Ehrenmueller-Jensen Berkeley, CA Apress L.P. 2020 1 Online-Ressource (xxiii, 344 Seiten) Illustrationen Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier R Script Visual: Scatter with Spline. - Includes bibliographical references and index. - Print version record This book explains how you can enrich the data you have loaded into Power BI Desktop by accessing a suite of Artificial Intelligence (AI) features. These AI features are built into Power BI Desktop and help you to gain new insights from existing data. Some of the features are automated and are available to you at the click of a button or through writing Data Analysis Expressions (DAX). Other features are available through writing code in either the R, Python, or M languages. This book opens up the entire suite of AI features to you with clear examples showing when they are best applied and how to invoke them on your own datasets. No matter if you are a business user, analyst, or data scientist - Power BI has AI capabilities tailored to you. This book helps you learn what types of insights Power BI is capable of delivering automatically. You will learn how to integrate and leverage the use of the R and Python languages for statistics, how to integrate with Cognitive Services and Azure Machine Learning Services when loading data, how to explore your data by asking questions in plain English ... and more! There are AI features for discovering your data, characterizing unexplored datasets, and building what-if scenarios. Theres much to like and learn from this book whether you are a newcomer to Power BI or a seasoned user. Power BI Desktop is a freely available tool for visualization and analysis. This book helps you to get the most from that tool by exploiting some of its latest and most advanced features. You will: Ask questions in natural language and get answers from your data Let Power BI explain why a certain data point differs from the rest Have Power BI show key influencers over categories of data Access artificial intelligence features available in the Azure cloud Walk the same drill down path in different parts of your hierarchy Load visualizations to add smartness to your reports Simulate changes in data and immediately see the consequences Know your dat a, even before you build your first report Create new columns by giving examples of the data that you need Transform and visualize your data with the help of R and Python scripts. Microsoft .NET Framework Business Data processing Artificial intelligence Machine learning Computer science Artificial Intelligence Electronic Data Processing Machine Learning Gestion ; Informatique Intelligence artificielle Apprentissage automatique Informatique artificial intelligence Microsoft programming Computers ; Intelligence (AI) & Semantics Computers ; Computer Science Computers ; Programming ; Microsoft Programming Business ; Data processing 9781484262306 Erscheint auch als Druck-Ausgabe 9781484262306 |
spellingShingle | Ehrenmueller-Jensen, Markus Self-service AI with Power BI Desktop machine learning insights for business Microsoft .NET Framework Business Data processing Artificial intelligence Machine learning Computer science Artificial Intelligence Electronic Data Processing Machine Learning Gestion ; Informatique Intelligence artificielle Apprentissage automatique Informatique artificial intelligence Microsoft programming Computers ; Intelligence (AI) & Semantics Computers ; Computer Science Computers ; Programming ; Microsoft Programming Business ; Data processing |
title | Self-service AI with Power BI Desktop machine learning insights for business |
title_auth | Self-service AI with Power BI Desktop machine learning insights for business |
title_exact_search | Self-service AI with Power BI Desktop machine learning insights for business |
title_full | Self-service AI with Power BI Desktop machine learning insights for business Markus Ehrenmueller-Jensen |
title_fullStr | Self-service AI with Power BI Desktop machine learning insights for business Markus Ehrenmueller-Jensen |
title_full_unstemmed | Self-service AI with Power BI Desktop machine learning insights for business Markus Ehrenmueller-Jensen |
title_short | Self-service AI with Power BI Desktop |
title_sort | self service ai with power bi desktop machine learning insights for business |
title_sub | machine learning insights for business |
topic | Microsoft .NET Framework Business Data processing Artificial intelligence Machine learning Computer science Artificial Intelligence Electronic Data Processing Machine Learning Gestion ; Informatique Intelligence artificielle Apprentissage automatique Informatique artificial intelligence Microsoft programming Computers ; Intelligence (AI) & Semantics Computers ; Computer Science Computers ; Programming ; Microsoft Programming Business ; Data processing |
topic_facet | Microsoft .NET Framework Business Data processing Artificial intelligence Machine learning Computer science Artificial Intelligence Electronic Data Processing Machine Learning Gestion ; Informatique Intelligence artificielle Apprentissage automatique Informatique artificial intelligence Microsoft programming Computers ; Intelligence (AI) & Semantics Computers ; Computer Science Computers ; Programming ; Microsoft Programming Business ; Data processing |
work_keys_str_mv | AT ehrenmuellerjensenmarkus selfserviceaiwithpowerbidesktopmachinelearninginsightsforbusiness |