Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Place of publication not identified]
O'Reilly Media, Inc, USA
2021
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781492087823/?ar |
Summary: | Data pipelines are the foundation for success in data analytics and machine learning. Moving data from many diverse sources and processing it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as data pipeline design patterns, data ingestion implementation, data transformation, the orchestration of pipelines, and build versus buy decision making. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support machine learning and analytics needs Considerations for pipeline maintenance, testing, and alerting. |
Physical Description: | 1 online resource |
ISBN: | 9781492087809 1492087807 9781492087786 1492087785 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-05486576X | ||
003 | DE-627-1 | ||
005 | 20240228121317.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200807s2021 xx |||||o 00| ||eng c | ||
020 | |a 9781492087809 |c electronic bk. |9 978-1-4920-8780-9 | ||
020 | |a 1492087807 |c electronic bk. |9 1-4920-8780-7 | ||
020 | |a 9781492087786 |c electronic bk. |9 978-1-4920-8778-6 | ||
020 | |a 1492087785 |c electronic bk. |9 1-4920-8778-5 | ||
035 | |a (DE-627-1)05486576X | ||
035 | |a (DE-599)KEP05486576X | ||
035 | |a (ORHE)9781492087823 | ||
035 | |a (DE-627-1)05486576X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.74 |2 23 | |
100 | 1 | |a Densmore, James |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data pipelines pocket reference |b moving and processing data for analytics |
264 | 1 | |a [Place of publication not identified] |b O'Reilly Media, Inc, USA |c 2021 | |
300 | |a 1 online resource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Data pipelines are the foundation for success in data analytics and machine learning. Moving data from many diverse sources and processing it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as data pipeline design patterns, data ingestion implementation, data transformation, the orchestration of pipelines, and build versus buy decision making. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support machine learning and analytics needs Considerations for pipeline maintenance, testing, and alerting. | ||
650 | 0 | |a Database management | |
650 | 4 | |a Bases de données ; Gestion | |
650 | 4 | |a Database management | |
776 | 1 | |z 1492087831 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1492087831 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492087823/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-05486576X |
---|---|
_version_ | 1833357046305521664 |
adam_text | |
any_adam_object | |
author | Densmore, James |
author_facet | Densmore, James |
author_role | aut |
author_sort | Densmore, James |
author_variant | j d jd |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)05486576X (DE-599)KEP05486576X (ORHE)9781492087823 |
dewey-full | 005.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.74 |
dewey-search | 005.74 |
dewey-sort | 15.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02572cam a22004212c 4500</leader><controlfield tag="001">ZDB-30-ORH-05486576X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200807s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492087809</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4920-8780-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492087807</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4920-8780-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492087786</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4920-8778-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492087785</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4920-8778-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)05486576X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP05486576X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492087823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)05486576X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Densmore, James</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data pipelines pocket reference</subfield><subfield code="b">moving and processing data for analytics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media, Inc, USA</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data pipelines are the foundation for success in data analytics and machine learning. Moving data from many diverse sources and processing it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as data pipeline design patterns, data ingestion implementation, data transformation, the orchestration of pipelines, and build versus buy decision making. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support machine learning and analytics needs Considerations for pipeline maintenance, testing, and alerting.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1492087831</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1492087831</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492087823/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-05486576X |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:45:27Z |
institution | BVB |
isbn | 9781492087809 1492087807 9781492087786 1492087785 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | O'Reilly Media, Inc, USA |
record_format | marc |
spelling | Densmore, James VerfasserIn aut Data pipelines pocket reference moving and processing data for analytics [Place of publication not identified] O'Reilly Media, Inc, USA 2021 1 online resource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Data pipelines are the foundation for success in data analytics and machine learning. Moving data from many diverse sources and processing it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as data pipeline design patterns, data ingestion implementation, data transformation, the orchestration of pipelines, and build versus buy decision making. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support machine learning and analytics needs Considerations for pipeline maintenance, testing, and alerting. Database management Bases de données ; Gestion 1492087831 Erscheint auch als Druck-Ausgabe 1492087831 |
spellingShingle | Densmore, James Data pipelines pocket reference moving and processing data for analytics Database management Bases de données ; Gestion |
title | Data pipelines pocket reference moving and processing data for analytics |
title_auth | Data pipelines pocket reference moving and processing data for analytics |
title_exact_search | Data pipelines pocket reference moving and processing data for analytics |
title_full | Data pipelines pocket reference moving and processing data for analytics |
title_fullStr | Data pipelines pocket reference moving and processing data for analytics |
title_full_unstemmed | Data pipelines pocket reference moving and processing data for analytics |
title_short | Data pipelines pocket reference |
title_sort | data pipelines pocket reference moving and processing data for analytics |
title_sub | moving and processing data for analytics |
topic | Database management Bases de données ; Gestion |
topic_facet | Database management Bases de données ; Gestion |
work_keys_str_mv | AT densmorejames datapipelinespocketreferencemovingandprocessingdataforanalytics |