Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Körperschaft: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
[Erscheinungsort nicht ermittelbar]
O'Reilly Media, Inc.
2021
|
Ausgabe: | 1st edition. |
Links: | https://learning.oreilly.com/library/view/-/9781098115777/?ar |
Zusammenfassung: | The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow. The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure that models are treating users fairly. |
Beschreibung: | Online resource; Title from title page (viewed February 25, 2021) |
Umfang: | 1 online resource (400 pages) |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-053534123 | ||
003 | DE-627-1 | ||
005 | 20240228121108.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200625s2021 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)053534123 | ||
035 | |a (DE-599)KEP053534123 | ||
035 | |a (ORHE)9781098115777 | ||
035 | |a (DE-627-1)053534123 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.31 |2 23/eng/20230216 | |
100 | 1 | |a Lakshmanan, Valliappa |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Machine Learning Design Patterns |c Lakshmanan, Valliappa |
250 | |a 1st edition. | ||
264 | 1 | |a [Erscheinungsort nicht ermittelbar] |b O'Reilly Media, Inc. |c 2021 | |
300 | |a 1 online resource (400 pages) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; Title from title page (viewed February 25, 2021) | ||
520 | |a The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow. The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure that models are treating users fairly. | ||
700 | 1 | |a Robinson, Sara |e VerfasserIn |4 aut | |
700 | 1 | |a Munn, Michael |e VerfasserIn |4 aut | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781098115777/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-053534123 |
---|---|
_version_ | 1833357047256580096 |
adam_text | |
any_adam_object | |
author | Lakshmanan, Valliappa Robinson, Sara Munn, Michael |
author_corporate | Safari, an O'Reilly Media Company |
author_corporate_role | ctb |
author_facet | Lakshmanan, Valliappa Robinson, Sara Munn, Michael Safari, an O'Reilly Media Company |
author_role | aut aut aut |
author_sort | Lakshmanan, Valliappa |
author_variant | v l vl s r sr m m mm |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)053534123 (DE-599)KEP053534123 (ORHE)9781098115777 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02585cam a22003732c 4500</leader><controlfield tag="001">ZDB-30-ORH-053534123</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121108.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)053534123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP053534123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781098115777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)053534123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23/eng/20230216</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lakshmanan, Valliappa</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning Design Patterns</subfield><subfield code="c">Lakshmanan, Valliappa</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Erscheinungsort nicht ermittelbar]</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (400 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; Title from title page (viewed February 25, 2021)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow. The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure that models are treating users fairly.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Sara</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Munn, Michael</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781098115777/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-053534123 |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:45:28Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (400 pages) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Lakshmanan, Valliappa VerfasserIn aut Machine Learning Design Patterns Lakshmanan, Valliappa 1st edition. [Erscheinungsort nicht ermittelbar] O'Reilly Media, Inc. 2021 1 online resource (400 pages) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; Title from title page (viewed February 25, 2021) The design patterns in this book capture best practices and solutions to recurring problems in machine learning. Authors Valliappa Lakshmanan, Sara Robinson, and Michael Munn catalog the first tried-and-proven methods to help engineers tackle problems that frequently crop up during the ML process. These design patterns codify the experience of hundreds of experts into advice you can easily follow. The authors, three Google Cloud engineers, describe 30 patterns for data and problem representation, operationalization, repeatability, reproducibility, flexibility, explainability, and fairness. Each pattern includes a description of the problem, a variety of potential solutions, and recommendations for choosing the most appropriate remedy for your situation. You'll learn how to: Identify and mitigate common challenges when training, evaluating, and deploying ML models Represent data for different ML model types, including embeddings, feature crosses, and more Choose the right model type for specific problems Build a robust training loop that uses checkpoints, distribution strategy, and hyperparameter tuning Deploy scalable ML systems that you can retrain and update to reflect new data Interpret model predictions for stakeholders and ensure that models are treating users fairly. Robinson, Sara VerfasserIn aut Munn, Michael VerfasserIn aut Safari, an O'Reilly Media Company. MitwirkendeR ctb |
spellingShingle | Lakshmanan, Valliappa Robinson, Sara Munn, Michael Machine Learning Design Patterns |
title | Machine Learning Design Patterns |
title_auth | Machine Learning Design Patterns |
title_exact_search | Machine Learning Design Patterns |
title_full | Machine Learning Design Patterns Lakshmanan, Valliappa |
title_fullStr | Machine Learning Design Patterns Lakshmanan, Valliappa |
title_full_unstemmed | Machine Learning Design Patterns Lakshmanan, Valliappa |
title_short | Machine Learning Design Patterns |
title_sort | machine learning design patterns |
work_keys_str_mv | AT lakshmananvalliappa machinelearningdesignpatterns AT robinsonsara machinelearningdesignpatterns AT munnmichael machinelearningdesignpatterns AT safarianoreillymediacompany machinelearningdesignpatterns |