Iterative splitting methods for differential equations:
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction e...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Boca Raton, Fla.
Chapman and Hall/CRC
2011
|
Schriftenreihe: | Chapman and Hall/CRC numerical analysis and scientific computing series
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781439869833/?ar |
Zusammenfassung: | Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r 3 t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy. |
Beschreibung: | "A Chapman & Hall book.". - Includes bibliographical references (pages 285-300) and index |
Umfang: | 1 online resource (xxiii, 303 pages) illustrations. |
ISBN: | 9781439869833 1439869839 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-053533291 | ||
003 | DE-627-1 | ||
005 | 20240228114841.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200625s2011 xx |||||o 00| ||eng c | ||
020 | |a 9781439869833 |c electronic bk. |9 978-1-4398-6983-3 | ||
020 | |a 1439869839 |c electronic bk. |9 1-4398-6983-9 | ||
035 | |a (DE-627-1)053533291 | ||
035 | |a (DE-599)KEP053533291 | ||
035 | |a (ORHE)9781439869833 | ||
035 | |a (DE-627-1)053533291 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a MAT |2 bisacsh | |
082 | 0 | |a 515.35 | |
100 | 1 | |a Geiser, Juergen |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Iterative splitting methods for differential equations |c Juergen Geiser |
264 | 1 | |a Boca Raton, Fla. |b Chapman and Hall/CRC |c 2011 | |
300 | |a 1 online resource (xxiii, 303 pages) |b illustrations. | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Chapman and Hall/CRC numerical analysis and scientific computing series | |
500 | |a "A Chapman & Hall book.". - Includes bibliographical references (pages 285-300) and index | ||
520 | |a Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r 3 t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy. | ||
650 | 0 | |a Differential equations | |
650 | 4 | |a Équations différentielles | |
650 | 4 | |a MATHEMATICS ; Differential Equations ; General | |
650 | 4 | |a Differential equations | |
776 | 1 | |z 9781439869826 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781439869826 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781439869833/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-053533291 |
---|---|
_version_ | 1833357152731791360 |
adam_text | |
any_adam_object | |
author | Geiser, Juergen |
author_facet | Geiser, Juergen |
author_role | aut |
author_sort | Geiser, Juergen |
author_variant | j g jg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)053533291 (DE-599)KEP053533291 (ORHE)9781439869833 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02926cam a22004332c 4500</leader><controlfield tag="001">ZDB-30-ORH-053533291</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228114841.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439869833</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4398-6983-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1439869839</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4398-6983-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)053533291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP053533291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781439869833</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)053533291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Geiser, Juergen</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterative splitting methods for differential equations</subfield><subfield code="c">Juergen Geiser</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla.</subfield><subfield code="b">Chapman and Hall/CRC</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiii, 303 pages)</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman and Hall/CRC numerical analysis and scientific computing series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"A Chapman & Hall book.". - Includes bibliographical references (pages 285-300) and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r 3 t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS ; Differential Equations ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781439869826</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781439869826</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781439869833/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-053533291 |
illustrated | Illustrated |
indexdate | 2025-05-28T09:47:09Z |
institution | BVB |
isbn | 9781439869833 1439869839 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (xxiii, 303 pages) illustrations. |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Chapman and Hall/CRC |
record_format | marc |
series2 | Chapman and Hall/CRC numerical analysis and scientific computing series |
spelling | Geiser, Juergen VerfasserIn aut Iterative splitting methods for differential equations Juergen Geiser Boca Raton, Fla. Chapman and Hall/CRC 2011 1 online resource (xxiii, 303 pages) illustrations. Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Chapman and Hall/CRC numerical analysis and scientific computing series "A Chapman & Hall book.". - Includes bibliographical references (pages 285-300) and index Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations. The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r 3 t and FIDOS. Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy. Differential equations Équations différentielles MATHEMATICS ; Differential Equations ; General 9781439869826 Erscheint auch als Druck-Ausgabe 9781439869826 |
spellingShingle | Geiser, Juergen Iterative splitting methods for differential equations Differential equations Équations différentielles MATHEMATICS ; Differential Equations ; General |
title | Iterative splitting methods for differential equations |
title_auth | Iterative splitting methods for differential equations |
title_exact_search | Iterative splitting methods for differential equations |
title_full | Iterative splitting methods for differential equations Juergen Geiser |
title_fullStr | Iterative splitting methods for differential equations Juergen Geiser |
title_full_unstemmed | Iterative splitting methods for differential equations Juergen Geiser |
title_short | Iterative splitting methods for differential equations |
title_sort | iterative splitting methods for differential equations |
topic | Differential equations Équations différentielles MATHEMATICS ; Differential Equations ; General |
topic_facet | Differential equations Équations différentielles MATHEMATICS ; Differential Equations ; General |
work_keys_str_mv | AT geiserjuergen iterativesplittingmethodsfordifferentialequations |