Executive briefing: an age of embeddings
"Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embed...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch Video |
Sprache: | Englisch |
Veröffentlicht: |
[Place of publication not identified]
O'Reilly Media
2019
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/0636920371021/?ar |
Zusammenfassung: | "Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embeddings leverage advances in deep neural networks to be effective. Following the success of word embeddings, there have been massive efforts in both academia and industry to embed all kinds of data, including images, speech, video, entire sentences, phrases and documents, structured data, and even computer programs. These piecemeal approaches are now starting to converge, drawing on a similar mix of techniques. Mayank Kejriwal (USC Information Sciences Institute) explores the ongoing movement that's attempting to embed every conceivable kind of data, sometimes jointly, to build ever-more powerful predictive models. Mayank makes a business case for why you should care about embeddings and how you can position them as your organization's secret sauce within a broader AI strategy. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page |
Beschreibung: | Title from title screen (viewed July 22, 2020) |
Umfang: | 1 Online-Ressource (1 streaming video file (44 min., 59 sec.)) |
Internformat
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-050573152 | ||
003 | DE-627-1 | ||
005 | 20240228121119.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 200324s2019 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)050573152 | ||
035 | |a (DE-599)KEP050573152 | ||
035 | |a (ORHE)0636920371021 | ||
035 | |a (DE-627-1)050573152 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Kejriwal, Mayank |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Executive briefing |b an age of embeddings |c Mayank Kejriwal |
246 | 3 | 3 | |a Age of embeddings |
264 | 1 | |a [Place of publication not identified] |b O'Reilly Media |c 2019 | |
300 | |a 1 Online-Ressource (1 streaming video file (44 min., 59 sec.)) | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Title from title screen (viewed July 22, 2020) | ||
520 | |a "Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embeddings leverage advances in deep neural networks to be effective. Following the success of word embeddings, there have been massive efforts in both academia and industry to embed all kinds of data, including images, speech, video, entire sentences, phrases and documents, structured data, and even computer programs. These piecemeal approaches are now starting to converge, drawing on a similar mix of techniques. Mayank Kejriwal (USC Information Sciences Institute) explores the ongoing movement that's attempting to embed every conceivable kind of data, sometimes jointly, to build ever-more powerful predictive models. Mayank makes a business case for why you should care about embeddings and how you can position them as your organization's secret sauce within a broader AI strategy. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page | ||
611 | 2 | 0 | |a O'Reilly Artificial Intelligence Conference |c San Jose, Calif.) |d (2019 |
650 | 0 | |a Natural language processing (Computer science) | |
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Embedded computer systems | |
650 | 2 | |a Natural Language Processing | |
650 | 2 | |a Artificial Intelligence | |
650 | 4 | |a Traitement automatique des langues naturelles | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Systèmes enfouis (Informatique) | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a Artificial intelligence |0 (OCoLC)fst00817247 | |
650 | 4 | |a Embedded computer systems |0 (OCoLC)fst00908298 | |
650 | 4 | |a Machine learning |0 (OCoLC)fst01004795 | |
650 | 4 | |a Natural language processing (Computer science) |0 (OCoLC)fst01034365 | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/0636920371021/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-050573152 |
---|---|
_version_ | 1821494947436560384 |
adam_text | |
any_adam_object | |
author | Kejriwal, Mayank |
author_facet | Kejriwal, Mayank |
author_role | aut |
author_sort | Kejriwal, Mayank |
author_variant | m k mk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)050573152 (DE-599)KEP050573152 (ORHE)0636920371021 |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03176cgm a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-050573152</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121119.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200324s2019 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)050573152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP050573152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0636920371021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)050573152</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kejriwal, Mayank</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Executive briefing</subfield><subfield code="b">an age of embeddings</subfield><subfield code="c">Mayank Kejriwal</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Age of embeddings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 streaming video file (44 min., 59 sec.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from title screen (viewed July 22, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embeddings leverage advances in deep neural networks to be effective. Following the success of word embeddings, there have been massive efforts in both academia and industry to embed all kinds of data, including images, speech, video, entire sentences, phrases and documents, structured data, and even computer programs. These piecemeal approaches are now starting to converge, drawing on a similar mix of techniques. Mayank Kejriwal (USC Information Sciences Institute) explores the ongoing movement that's attempting to embed every conceivable kind of data, sometimes jointly, to build ever-more powerful predictive models. Mayank makes a business case for why you should care about embeddings and how you can position them as your organization's secret sauce within a broader AI strategy. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page</subfield></datafield><datafield tag="611" ind1="2" ind2="0"><subfield code="a">O'Reilly Artificial Intelligence Conference</subfield><subfield code="c">San Jose, Calif.)</subfield><subfield code="d">(2019</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Embedded computer systems</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Natural Language Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systèmes enfouis (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield><subfield code="0">(OCoLC)fst00817247</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embedded computer systems</subfield><subfield code="0">(OCoLC)fst00908298</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="0">(OCoLC)fst01004795</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="0">(OCoLC)fst01034365</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0636920371021/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-050573152 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:28Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 streaming video file (44 min., 59 sec.)) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Kejriwal, Mayank VerfasserIn aut Executive briefing an age of embeddings Mayank Kejriwal Age of embeddings [Place of publication not identified] O'Reilly Media 2019 1 Online-Ressource (1 streaming video file (44 min., 59 sec.)) zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Title from title screen (viewed July 22, 2020) "Word embeddings first emerged as a revolutionary technique in natural language processing (NLP) in the last decade, allowing machines to read large reams of unlabeled text and automatically answer analogical questions such as, 'What is to man as queen is to woman?'" Modern embeddings leverage advances in deep neural networks to be effective. Following the success of word embeddings, there have been massive efforts in both academia and industry to embed all kinds of data, including images, speech, video, entire sentences, phrases and documents, structured data, and even computer programs. These piecemeal approaches are now starting to converge, drawing on a similar mix of techniques. Mayank Kejriwal (USC Information Sciences Institute) explores the ongoing movement that's attempting to embed every conceivable kind of data, sometimes jointly, to build ever-more powerful predictive models. Mayank makes a business case for why you should care about embeddings and how you can position them as your organization's secret sauce within a broader AI strategy. This session is from the 2019 O'Reilly Artificial Intelligence Conference in San Jose, CA."--Resource description page O'Reilly Artificial Intelligence Conference San Jose, Calif.) (2019 Natural language processing (Computer science) Artificial intelligence Machine learning Embedded computer systems Natural Language Processing Artificial Intelligence Traitement automatique des langues naturelles Intelligence artificielle Apprentissage automatique Systèmes enfouis (Informatique) artificial intelligence Artificial intelligence (OCoLC)fst00817247 Embedded computer systems (OCoLC)fst00908298 Machine learning (OCoLC)fst01004795 Natural language processing (Computer science) (OCoLC)fst01034365 |
spellingShingle | Kejriwal, Mayank Executive briefing an age of embeddings O'Reilly Artificial Intelligence Conference San Jose, Calif.) (2019 Natural language processing (Computer science) Artificial intelligence Machine learning Embedded computer systems Natural Language Processing Artificial Intelligence Traitement automatique des langues naturelles Intelligence artificielle Apprentissage automatique Systèmes enfouis (Informatique) artificial intelligence Artificial intelligence (OCoLC)fst00817247 Embedded computer systems (OCoLC)fst00908298 Machine learning (OCoLC)fst01004795 Natural language processing (Computer science) (OCoLC)fst01034365 |
subject_GND | (OCoLC)fst00817247 (OCoLC)fst00908298 (OCoLC)fst01004795 (OCoLC)fst01034365 |
title | Executive briefing an age of embeddings |
title_alt | Age of embeddings |
title_auth | Executive briefing an age of embeddings |
title_exact_search | Executive briefing an age of embeddings |
title_full | Executive briefing an age of embeddings Mayank Kejriwal |
title_fullStr | Executive briefing an age of embeddings Mayank Kejriwal |
title_full_unstemmed | Executive briefing an age of embeddings Mayank Kejriwal |
title_short | Executive briefing |
title_sort | executive briefing an age of embeddings |
title_sub | an age of embeddings |
topic | O'Reilly Artificial Intelligence Conference San Jose, Calif.) (2019 Natural language processing (Computer science) Artificial intelligence Machine learning Embedded computer systems Natural Language Processing Artificial Intelligence Traitement automatique des langues naturelles Intelligence artificielle Apprentissage automatique Systèmes enfouis (Informatique) artificial intelligence Artificial intelligence (OCoLC)fst00817247 Embedded computer systems (OCoLC)fst00908298 Machine learning (OCoLC)fst01004795 Natural language processing (Computer science) (OCoLC)fst01034365 |
topic_facet | O'Reilly Artificial Intelligence Conference San Jose, Calif.) (2019 Natural language processing (Computer science) Artificial intelligence Machine learning Embedded computer systems Natural Language Processing Artificial Intelligence Traitement automatique des langues naturelles Intelligence artificielle Apprentissage automatique Systèmes enfouis (Informatique) artificial intelligence |
work_keys_str_mv | AT kejriwalmayank executivebriefinganageofembeddings AT kejriwalmayank ageofembeddings |