Deep learning for coders with fastai and PyTorch:
Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a w...
Saved in:
Main Authors: | , |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Sebastopol, CA
O'Reilly Media, Inc.
[2020]
|
Edition: | 1st edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781492045519/?ar |
Summary: | Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions. |
Physical Description: | 1 Online-Ressource |
ISBN: | 9781492045472 1492045470 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-05057289X | ||
003 | DE-627-1 | ||
005 | 20240228121016.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200324s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781492045472 |c electronic book |9 978-1-4920-4547-2 | ||
020 | |a 1492045470 |c electronic book |9 1-4920-4547-0 | ||
035 | |a (DE-627-1)05057289X | ||
035 | |a (DE-599)KEP05057289X | ||
035 | |a (ORHE)9781492045519 | ||
035 | |a (DE-627-1)05057289X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a Howard, Jeremy |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Deep learning for coders with fastai and PyTorch |c Jeremy Howard and Sylvain Gugger |
250 | |a 1st edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc. |c [2020] | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions. | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Gugger, Sylvain |e VerfasserIn |4 aut | |
710 | 2 | |a Safari, an O'Reilly Media Company. |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492045519/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-05057289X |
---|---|
_version_ | 1829007756283084800 |
adam_text | |
any_adam_object | |
author | Howard, Jeremy Gugger, Sylvain |
author_corporate | Safari, an O'Reilly Media Company |
author_corporate_role | ctb |
author_facet | Howard, Jeremy Gugger, Sylvain Safari, an O'Reilly Media Company |
author_role | aut aut |
author_sort | Howard, Jeremy |
author_variant | j h jh s g sg |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)05057289X (DE-599)KEP05057289X (ORHE)9781492045519 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | 1st edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01963cam a22004092c 4500</leader><controlfield tag="001">ZDB-30-ORH-05057289X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228121016.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200324s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492045472</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4920-4547-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1492045470</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4920-4547-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)05057289X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP05057289X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492045519</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)05057289X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Howard, Jeremy</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning for coders with fastai and PyTorch</subfield><subfield code="c">Jeremy Howard and Sylvain Gugger</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2020]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gugger, Sylvain</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Safari, an O'Reilly Media Company.</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492045519/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-05057289X |
illustrated | Not Illustrated |
indexdate | 2025-04-10T09:35:21Z |
institution | BVB |
isbn | 9781492045472 1492045470 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Howard, Jeremy VerfasserIn aut Deep learning for coders with fastai and PyTorch Jeremy Howard and Sylvain Gugger 1st edition. Sebastopol, CA O'Reilly Media, Inc. [2020] 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Deep learning has the reputation as an exclusive domain for math PhDs. Not so. With this book, programmers comfortable with Python will learn how to get started with deep learning right away. Using PyTorch and the fastai deep learning library, you'll learn how to train a model to accomplish a wide range of tasks-including computer vision, natural language processing, tabular data, and generative networks. At the same time, you'll dig progressively into deep learning theory so that by the end of the book you'll have a complete understanding of the math behind the library's functions. Machine learning Apprentissage automatique Gugger, Sylvain VerfasserIn aut Safari, an O'Reilly Media Company. MitwirkendeR ctb |
spellingShingle | Howard, Jeremy Gugger, Sylvain Deep learning for coders with fastai and PyTorch Machine learning Apprentissage automatique |
title | Deep learning for coders with fastai and PyTorch |
title_auth | Deep learning for coders with fastai and PyTorch |
title_exact_search | Deep learning for coders with fastai and PyTorch |
title_full | Deep learning for coders with fastai and PyTorch Jeremy Howard and Sylvain Gugger |
title_fullStr | Deep learning for coders with fastai and PyTorch Jeremy Howard and Sylvain Gugger |
title_full_unstemmed | Deep learning for coders with fastai and PyTorch Jeremy Howard and Sylvain Gugger |
title_short | Deep learning for coders with fastai and PyTorch |
title_sort | deep learning for coders with fastai and pytorch |
topic | Machine learning Apprentissage automatique |
topic_facet | Machine learning Apprentissage automatique |
work_keys_str_mv | AT howardjeremy deeplearningforcoderswithfastaiandpytorch AT guggersylvain deeplearningforcoderswithfastaiandpytorch AT safarianoreillymediacompany deeplearningforcoderswithfastaiandpytorch |