Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berkeley, CA
Apress
[2019]
|
Edition: | Early first edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781484251102/?ar |
Summary: | Big Data Clusters is a feature set covering data virtualization, distributed computing, and relational databases and provides a complete AI platform across the entire cluster environment. This book shows you how to deploy, manage, and use Big Data Clusters. For example, you will learn how to combine data stored on the HDFS file system together with data stored inside the SQL Server instances that make up the Big Data Cluster. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019 using Release Candidate 1. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL--taking advantage of skills you have honed for years--and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019 combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis. |
Item Description: | Includes index |
Physical Description: | 1 Online-Ressource (xv, 246 pages) illustrations |
ISBN: | 9781484251102 1484251105 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-049362534 | ||
003 | DE-627-1 | ||
005 | 20240228120935.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200120s2019 xx |||||o 00| ||eng c | ||
020 | |a 9781484251102 |9 978-1-4842-5110-2 | ||
020 | |a 1484251105 |9 1-4842-5110-5 | ||
035 | |a (DE-627-1)049362534 | ||
035 | |a (DE-599)KEP049362534 | ||
035 | |a (ORHE)9781484251102 | ||
035 | |a (DE-627-1)049362534 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.74 | |
100 | 1 | |a Weissman, Benjamin |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a SQL server big data clusters |b early first edition based on release candidate 1 |c [by] Benjamin Weissman [and] Enrico van de Laar |
246 | 3 | 3 | |a Early first edition based on release candidate 1 |
250 | |a Early first edition. | ||
264 | 1 | |a Berkeley, CA |b Apress |c [2019] | |
264 | 4 | |c ©2019 | |
300 | |a 1 Online-Ressource (xv, 246 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index | ||
520 | |a Big Data Clusters is a feature set covering data virtualization, distributed computing, and relational databases and provides a complete AI platform across the entire cluster environment. This book shows you how to deploy, manage, and use Big Data Clusters. For example, you will learn how to combine data stored on the HDFS file system together with data stored inside the SQL Server instances that make up the Big Data Cluster. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019 using Release Candidate 1. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL--taking advantage of skills you have honed for years--and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019 combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis. | ||
630 | 2 | 0 | |a SQL server |
650 | 0 | |a Database management | |
650 | 0 | |a Big data | |
650 | 4 | |a SQL server | |
650 | 4 | |a Bases de données ; Gestion | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Big data | |
650 | 4 | |a Database management | |
700 | 1 | |a Laar, Enrico van de |e VerfasserIn |4 aut | |
776 | 1 | |z 9781484251096 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484251096 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484251102/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-049362534 |
---|---|
_version_ | 1835903161485754368 |
adam_text | |
any_adam_object | |
author | Weissman, Benjamin Laar, Enrico van de |
author_facet | Weissman, Benjamin Laar, Enrico van de |
author_role | aut aut |
author_sort | Weissman, Benjamin |
author_variant | b w bw e v d l evd evdl |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)049362534 (DE-599)KEP049362534 (ORHE)9781484251102 |
dewey-full | 005.74 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.74 |
dewey-search | 005.74 |
dewey-sort | 15.74 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Early first edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03148cam a22005172c 4500</leader><controlfield tag="001">ZDB-30-ORH-049362534</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120935.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200120s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484251102</subfield><subfield code="9">978-1-4842-5110-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484251105</subfield><subfield code="9">1-4842-5110-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)049362534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP049362534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484251102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)049362534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.74</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weissman, Benjamin</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SQL server big data clusters</subfield><subfield code="b">early first edition based on release candidate 1</subfield><subfield code="c">[by] Benjamin Weissman [and] Enrico van de Laar</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Early first edition based on release candidate 1</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Early first edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 246 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Big Data Clusters is a feature set covering data virtualization, distributed computing, and relational databases and provides a complete AI platform across the entire cluster environment. This book shows you how to deploy, manage, and use Big Data Clusters. For example, you will learn how to combine data stored on the HDFS file system together with data stored inside the SQL Server instances that make up the Big Data Cluster. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019 using Release Candidate 1. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL--taking advantage of skills you have honed for years--and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019 combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis.</subfield></datafield><datafield tag="630" ind1="2" ind2="0"><subfield code="a">SQL server</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SQL server</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Laar, Enrico van de</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484251096</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484251096</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484251102/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-049362534 |
illustrated | Illustrated |
indexdate | 2025-06-25T12:14:52Z |
institution | BVB |
isbn | 9781484251102 1484251105 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 246 pages) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Apress |
record_format | marc |
spelling | Weissman, Benjamin VerfasserIn aut SQL server big data clusters early first edition based on release candidate 1 [by] Benjamin Weissman [and] Enrico van de Laar Early first edition based on release candidate 1 Early first edition. Berkeley, CA Apress [2019] ©2019 1 Online-Ressource (xv, 246 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index Big Data Clusters is a feature set covering data virtualization, distributed computing, and relational databases and provides a complete AI platform across the entire cluster environment. This book shows you how to deploy, manage, and use Big Data Clusters. For example, you will learn how to combine data stored on the HDFS file system together with data stored inside the SQL Server instances that make up the Big Data Cluster. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019 using Release Candidate 1. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, you are taught about querying. You will learn to write queries in Transact-SQL--taking advantage of skills you have honed for years--and with those queries you will be able to examine and analyze data from a wide variety of sources such as Apache Spark. Through the theoretical foundation provided in this book and easy-to-follow example scripts and notebooks, you will be ready to use and unveil the full potential of SQL Server 2019 combining different types of data spread across widely disparate sources into a single view that is useful for business intelligence and machine learning analysis. SQL server Database management Big data Bases de données ; Gestion Données volumineuses Laar, Enrico van de VerfasserIn aut 9781484251096 Erscheint auch als Druck-Ausgabe 9781484251096 |
spellingShingle | Weissman, Benjamin Laar, Enrico van de SQL server big data clusters early first edition based on release candidate 1 SQL server Database management Big data Bases de données ; Gestion Données volumineuses |
title | SQL server big data clusters early first edition based on release candidate 1 |
title_alt | Early first edition based on release candidate 1 |
title_auth | SQL server big data clusters early first edition based on release candidate 1 |
title_exact_search | SQL server big data clusters early first edition based on release candidate 1 |
title_full | SQL server big data clusters early first edition based on release candidate 1 [by] Benjamin Weissman [and] Enrico van de Laar |
title_fullStr | SQL server big data clusters early first edition based on release candidate 1 [by] Benjamin Weissman [and] Enrico van de Laar |
title_full_unstemmed | SQL server big data clusters early first edition based on release candidate 1 [by] Benjamin Weissman [and] Enrico van de Laar |
title_short | SQL server big data clusters |
title_sort | sql server big data clusters early first edition based on release candidate 1 |
title_sub | early first edition based on release candidate 1 |
topic | SQL server Database management Big data Bases de données ; Gestion Données volumineuses |
topic_facet | SQL server Database management Big data Bases de données ; Gestion Données volumineuses |
work_keys_str_mv | AT weissmanbenjamin sqlserverbigdataclustersearlyfirsteditionbasedonreleasecandidate1 AT laarenricovande sqlserverbigdataclustersearlyfirsteditionbasedonreleasecandidate1 AT weissmanbenjamin earlyfirsteditionbasedonreleasecandidate1 AT laarenricovande earlyfirsteditionbasedonreleasecandidate1 |