Deep learning pipeline: building a deep learning model with TensorFlow
Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and r...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berkeley, CA
Apress LP
2020
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484253496/?ar |
Zusammenfassung: | Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you! |
Beschreibung: | Measures of Center for Ordinal. - Includes index. - Print version record |
Umfang: | 1 Online-Ressource (563 Seiten) |
ISBN: | 9781484253496 1484253493 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-04935406X | ||
003 | DE-627-1 | ||
005 | 20240228120938.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200120s2020 xx |||||o 00| ||eng c | ||
020 | |a 9781484253496 |c electronic bk. |9 978-1-4842-5349-6 | ||
020 | |a 1484253493 |c electronic bk. |9 1-4842-5349-3 | ||
035 | |a (DE-627-1)04935406X | ||
035 | |a (DE-599)KEP04935406X | ||
035 | |a (ORHE)9781484253496 | ||
035 | |a (DE-627-1)04935406X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 006.3/1 |2 23 | |
100 | 1 | |a El-Amir, Hisham |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Deep learning pipeline |b building a deep learning model with TensorFlow |c Hisham El-Amir, Mahmoud Hamdy |
264 | 1 | |a Berkeley, CA |b Apress LP |c 2020 | |
300 | |a 1 Online-Ressource (563 Seiten) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Measures of Center for Ordinal. - Includes index. - Print version record | ||
520 | |a Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you! | ||
650 | 0 | |a Machine learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Machine learning | |
700 | 1 | |a Hamdy, Mahmoud |e MitwirkendeR |4 ctb | |
776 | 1 | |z 9781484253489 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484253489 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484253496/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-04935406X |
---|---|
_version_ | 1821494845984735233 |
adam_text | |
any_adam_object | |
author | El-Amir, Hisham |
author2 | Hamdy, Mahmoud |
author2_role | ctb |
author2_variant | m h mh |
author_facet | El-Amir, Hisham Hamdy, Mahmoud |
author_role | aut |
author_sort | El-Amir, Hisham |
author_variant | h e a hea |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)04935406X (DE-599)KEP04935406X (ORHE)9781484253496 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02527cam a22004212 4500</leader><controlfield tag="001">ZDB-30-ORH-04935406X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120938.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200120s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484253496</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4842-5349-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1484253493</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4842-5349-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04935406X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP04935406X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484253496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04935406X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">El-Amir, Hisham</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning pipeline</subfield><subfield code="b">building a deep learning model with TensorFlow</subfield><subfield code="c">Hisham El-Amir, Mahmoud Hamdy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress LP</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (563 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Measures of Center for Ordinal. - Includes index. - Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you!</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hamdy, Mahmoud</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484253489</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484253489</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484253496/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-04935406X |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:20:52Z |
institution | BVB |
isbn | 9781484253496 1484253493 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (563 Seiten) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Apress LP |
record_format | marc |
spelling | El-Amir, Hisham VerfasserIn aut Deep learning pipeline building a deep learning model with TensorFlow Hisham El-Amir, Mahmoud Hamdy Berkeley, CA Apress LP 2020 1 Online-Ressource (563 Seiten) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Measures of Center for Ordinal. - Includes index. - Print version record Build your own pipeline based on modern TensorFlow approaches rather than outdated engineering concepts. This book shows you how to build a deep learning pipeline for real-life TensorFlow projects. You'll learn what a pipeline is and how it works so you can build a full application easily and rapidly. Then troubleshoot and overcome basic Tensorflow obstacles to easily create functional apps and deploy well-trained models. Step-by-step and example-oriented instructions help you understand each step of the deep learning pipeline while you apply the most straightforward and effective tools to demonstrative problems and datasets. You'll also develop a deep learning project by preparing data, choosing the model that fits that data, and debugging your model to get the best fit to data all using Tensorflow techniques. Enhance your skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution or entering a Kaggle contest, Deep Learning Pipeline is for you! Machine learning Apprentissage automatique Hamdy, Mahmoud MitwirkendeR ctb 9781484253489 Erscheint auch als Druck-Ausgabe 9781484253489 |
spellingShingle | El-Amir, Hisham Deep learning pipeline building a deep learning model with TensorFlow Machine learning Apprentissage automatique |
title | Deep learning pipeline building a deep learning model with TensorFlow |
title_auth | Deep learning pipeline building a deep learning model with TensorFlow |
title_exact_search | Deep learning pipeline building a deep learning model with TensorFlow |
title_full | Deep learning pipeline building a deep learning model with TensorFlow Hisham El-Amir, Mahmoud Hamdy |
title_fullStr | Deep learning pipeline building a deep learning model with TensorFlow Hisham El-Amir, Mahmoud Hamdy |
title_full_unstemmed | Deep learning pipeline building a deep learning model with TensorFlow Hisham El-Amir, Mahmoud Hamdy |
title_short | Deep learning pipeline |
title_sort | deep learning pipeline building a deep learning model with tensorflow |
title_sub | building a deep learning model with TensorFlow |
topic | Machine learning Apprentissage automatique |
topic_facet | Machine learning Apprentissage automatique |
work_keys_str_mv | AT elamirhisham deeplearningpipelinebuildingadeeplearningmodelwithtensorflow AT hamdymahmoud deeplearningpipelinebuildingadeeplearningmodelwithtensorflow |