Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Sebastopol, CA
O'Reilly Media
2019
|
Edition: | First edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781492038085/?ar |
Summary: | Managers and staff responsible for planning, hiring, and allocating resources need to understand how streaming data can fundamentally change their organizations. Companies everywhere are disrupting business, government, and society by using data and analytics to shape their business. Even if you don't have deep knowledge of programming or digital technology, this high-level introduction brings data streaming into focus. You won't find math or programming details here, or recommendations for particular tools in this rapidly evolving space. But you will explore the decision-making technologies and practices that organizations need to process streaming data and respond to fast-changing events. By describing the principles and activities behind this new phenomenon, author Andy Oram shows you how streaming data provides hidden gems of information that can transform the way your business works. Learn where streaming data comes from and how companies put it to work Follow a simple data processing project from ingesting and analyzing data to presenting results Explore how (and why) big data processing tools have evolved from MapReduce to Kubernetes Understand why streaming data is particularly useful for machine learning projects Learn how containers, microservices, and cloud computing led to continuous integration and DevOps. |
Item Description: | Online resource; title from title page (Safari, viewed August 14, 2019) |
Physical Description: | 1 Online-Ressource (1 volume) |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048604429 | ||
003 | DE-627-1 | ||
005 | 20240228120840.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2019 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)048604429 | ||
035 | |a (DE-599)KEP048604429 | ||
035 | |a (ORHE)9781492038085 | ||
035 | |a (DE-627-1)048604429 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Oram, Andrew |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Streaming data |b concepts that drive innovative analytics |c Andy Oram |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media |c 2019 | |
264 | 4 | |c ©2019 | |
300 | |a 1 Online-Ressource (1 volume) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title page (Safari, viewed August 14, 2019) | ||
520 | |a Managers and staff responsible for planning, hiring, and allocating resources need to understand how streaming data can fundamentally change their organizations. Companies everywhere are disrupting business, government, and society by using data and analytics to shape their business. Even if you don't have deep knowledge of programming or digital technology, this high-level introduction brings data streaming into focus. You won't find math or programming details here, or recommendations for particular tools in this rapidly evolving space. But you will explore the decision-making technologies and practices that organizations need to process streaming data and respond to fast-changing events. By describing the principles and activities behind this new phenomenon, author Andy Oram shows you how streaming data provides hidden gems of information that can transform the way your business works. Learn where streaming data comes from and how companies put it to work Follow a simple data processing project from ingesting and analyzing data to presenting results Explore how (and why) big data processing tools have evolved from MapReduce to Kubernetes Understand why streaming data is particularly useful for machine learning projects Learn how containers, microservices, and cloud computing led to continuous integration and DevOps. | ||
650 | 0 | |a Information technology |x Management | |
650 | 0 | |a Decision making |x Data processing | |
650 | 0 | |a Service-oriented architecture (Computer science) | |
650 | 0 | |a Data mining | |
650 | 0 | |a Big data | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Technologie de l'information ; Gestion | |
650 | 4 | |a Prise de décision ; Informatique | |
650 | 4 | |a Architecture orientée service (Informatique) | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Big data | |
650 | 4 | |a Data mining | |
650 | 4 | |a Decision making ; Data processing | |
650 | 4 | |a Information technology ; Management | |
650 | 4 | |a Service-oriented architecture (Computer science) | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492038085/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-048604429 |
---|---|
_version_ | 1835903163897479168 |
adam_text | |
any_adam_object | |
author | Oram, Andrew |
author_facet | Oram, Andrew |
author_role | aut |
author_sort | Oram, Andrew |
author_variant | a o ao |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048604429 (DE-599)KEP048604429 (ORHE)9781492038085 |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03162cam a22005292c 4500</leader><controlfield tag="001">ZDB-30-ORH-048604429</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048604429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048604429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492038085</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048604429</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oram, Andrew</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Streaming data</subfield><subfield code="b">concepts that drive innovative analytics</subfield><subfield code="c">Andy Oram</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2019</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title page (Safari, viewed August 14, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Managers and staff responsible for planning, hiring, and allocating resources need to understand how streaming data can fundamentally change their organizations. Companies everywhere are disrupting business, government, and society by using data and analytics to shape their business. Even if you don't have deep knowledge of programming or digital technology, this high-level introduction brings data streaming into focus. You won't find math or programming details here, or recommendations for particular tools in this rapidly evolving space. But you will explore the decision-making technologies and practices that organizations need to process streaming data and respond to fast-changing events. By describing the principles and activities behind this new phenomenon, author Andy Oram shows you how streaming data provides hidden gems of information that can transform the way your business works. Learn where streaming data comes from and how companies put it to work Follow a simple data processing project from ingesting and analyzing data to presenting results Explore how (and why) big data processing tools have evolved from MapReduce to Kubernetes Understand why streaming data is particularly useful for machine learning projects Learn how containers, microservices, and cloud computing led to continuous integration and DevOps.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information technology</subfield><subfield code="x">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Decision making</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Service-oriented architecture (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technologie de l'information ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prise de décision ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Architecture orientée service (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology ; Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Service-oriented architecture (Computer science)</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492038085/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048604429 |
illustrated | Not Illustrated |
indexdate | 2025-06-25T12:14:54Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Oram, Andrew VerfasserIn aut Streaming data concepts that drive innovative analytics Andy Oram First edition. Sebastopol, CA O'Reilly Media 2019 ©2019 1 Online-Ressource (1 volume) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title page (Safari, viewed August 14, 2019) Managers and staff responsible for planning, hiring, and allocating resources need to understand how streaming data can fundamentally change their organizations. Companies everywhere are disrupting business, government, and society by using data and analytics to shape their business. Even if you don't have deep knowledge of programming or digital technology, this high-level introduction brings data streaming into focus. You won't find math or programming details here, or recommendations for particular tools in this rapidly evolving space. But you will explore the decision-making technologies and practices that organizations need to process streaming data and respond to fast-changing events. By describing the principles and activities behind this new phenomenon, author Andy Oram shows you how streaming data provides hidden gems of information that can transform the way your business works. Learn where streaming data comes from and how companies put it to work Follow a simple data processing project from ingesting and analyzing data to presenting results Explore how (and why) big data processing tools have evolved from MapReduce to Kubernetes Understand why streaming data is particularly useful for machine learning projects Learn how containers, microservices, and cloud computing led to continuous integration and DevOps. Information technology Management Decision making Data processing Service-oriented architecture (Computer science) Data mining Big data Data Mining Technologie de l'information ; Gestion Prise de décision ; Informatique Architecture orientée service (Informatique) Exploration de données (Informatique) Données volumineuses Decision making ; Data processing Information technology ; Management |
spellingShingle | Oram, Andrew Streaming data concepts that drive innovative analytics Information technology Management Decision making Data processing Service-oriented architecture (Computer science) Data mining Big data Data Mining Technologie de l'information ; Gestion Prise de décision ; Informatique Architecture orientée service (Informatique) Exploration de données (Informatique) Données volumineuses Decision making ; Data processing Information technology ; Management |
title | Streaming data concepts that drive innovative analytics |
title_auth | Streaming data concepts that drive innovative analytics |
title_exact_search | Streaming data concepts that drive innovative analytics |
title_full | Streaming data concepts that drive innovative analytics Andy Oram |
title_fullStr | Streaming data concepts that drive innovative analytics Andy Oram |
title_full_unstemmed | Streaming data concepts that drive innovative analytics Andy Oram |
title_short | Streaming data |
title_sort | streaming data concepts that drive innovative analytics |
title_sub | concepts that drive innovative analytics |
topic | Information technology Management Decision making Data processing Service-oriented architecture (Computer science) Data mining Big data Data Mining Technologie de l'information ; Gestion Prise de décision ; Informatique Architecture orientée service (Informatique) Exploration de données (Informatique) Données volumineuses Decision making ; Data processing Information technology ; Management |
topic_facet | Information technology Management Decision making Data processing Service-oriented architecture (Computer science) Data mining Big data Data Mining Technologie de l'information ; Gestion Prise de décision ; Informatique Architecture orientée service (Informatique) Exploration de données (Informatique) Données volumineuses Decision making ; Data processing Information technology ; Management |
work_keys_str_mv | AT oramandrew streamingdataconceptsthatdriveinnovativeanalytics |