Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch Video |
Sprache: | Englisch |
Veröffentlicht: |
[Place of publication not identified]
O'Reilly Media
2019
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/0636920330868/?ar |
Zusammenfassung: | "Michael Johnson and Norris Heintzelman (Lockheed Martin) share several techniques they've implemented to build classification and NER models from scratch. They lead a tour through this space as it applies to NLP and demonstrate their approach and architecture for the following techniques: Weak supervision for news documents: Using rules base classification alongside deep learning system for text classification; Active learning and human in the loop: Explaining how breakthroughs in transfer learning for NLP have impacted their active learning framework for building an LSTM-based relevance model; Creative training sets: Identifying and cleaning already-labeled datasets, training classifier on "only" positive examples; NER adjudication: Combining knowledge from several annotation sources that leverages the strengths of each source. For each of these topics, Michael and Norris outline the theoretical foundation, the implementation architecture, and tools used and discuss the problems they encountered, so you can avoid making the same mistakes."--Resource description page |
Beschreibung: | Title from title screen (viewed January 10, 2020) |
Umfang: | 1 online resource (1 streaming video file (43 min., 17 sec.)) |
Internformat
MARC
LEADER | 00000cgm a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-048584339 | ||
003 | DE-627-1 | ||
005 | 20240228120940.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 191206s2019 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)048584339 | ||
035 | |a (DE-599)KEP048584339 | ||
035 | |a (ORHE)0636920330868 | ||
035 | |a (DE-627-1)048584339 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a E VIDEO | |
100 | 1 | |a Johnson, Michael L. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a NLP from scratch |b solving the cold start problem for natural language processing |c Michael Johnson, Norris Heintzelman |
264 | 1 | |a [Place of publication not identified] |b O'Reilly Media |c 2019 | |
300 | |a 1 online resource (1 streaming video file (43 min., 17 sec.)) | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Title from title screen (viewed January 10, 2020) | ||
520 | |a "Michael Johnson and Norris Heintzelman (Lockheed Martin) share several techniques they've implemented to build classification and NER models from scratch. They lead a tour through this space as it applies to NLP and demonstrate their approach and architecture for the following techniques: Weak supervision for news documents: Using rules base classification alongside deep learning system for text classification; Active learning and human in the loop: Explaining how breakthroughs in transfer learning for NLP have impacted their active learning framework for building an LSTM-based relevance model; Creative training sets: Identifying and cleaning already-labeled datasets, training classifier on "only" positive examples; NER adjudication: Combining knowledge from several annotation sources that leverages the strengths of each source. For each of these topics, Michael and Norris outline the theoretical foundation, the implementation architecture, and tools used and discuss the problems they encountered, so you can avoid making the same mistakes."--Resource description page | ||
611 | 2 | 0 | |a Strata Conference |c San Francisco, Calif.) |d (2019 |
650 | 0 | |a Natural language processing (Computer science) | |
650 | 0 | |a Machine learning | |
650 | 0 | |a Business logistics |x Data processing | |
650 | 0 | |a Big data | |
650 | 2 | |a Natural Language Processing | |
650 | 4 | |a Traitement automatique des langues naturelles | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Logistique (Organisation) ; Informatique | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Big data |0 (OCoLC)fst01892965 | |
650 | 4 | |a Business logistics ; Data processing |0 (OCoLC)fst00842765 | |
650 | 4 | |a Machine learning |0 (OCoLC)fst01004795 | |
650 | 4 | |a Natural language processing (Computer science) |0 (OCoLC)fst01034365 | |
650 | 4 | |a Electronic videos | |
700 | 1 | |a Heintzelman, Norris |e MitwirkendeR |4 ctb | |
710 | 2 | |a O'Reilly & Associates, |e Verlag |4 pbl | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/0636920330868/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-048584339 |
---|---|
_version_ | 1833357153985888256 |
adam_text | |
any_adam_object | |
author | Johnson, Michael L. |
author2 | Heintzelman, Norris |
author2_role | ctb |
author2_variant | n h nh |
author_facet | Johnson, Michael L. Heintzelman, Norris |
author_role | aut |
author_sort | Johnson, Michael L. |
author_variant | m l j ml mlj |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)048584339 (DE-599)KEP048584339 (ORHE)0636920330868 |
dewey-raw | E VIDEO |
dewey-search | E VIDEO |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03165cgm a22005412c 4500</leader><controlfield tag="001">ZDB-30-ORH-048584339</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120940.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191206s2019 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048584339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP048584339</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)0636920330868</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)048584339</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">E VIDEO</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Johnson, Michael L.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NLP from scratch</subfield><subfield code="b">solving the cold start problem for natural language processing</subfield><subfield code="c">Michael Johnson, Norris Heintzelman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 streaming video file (43 min., 17 sec.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from title screen (viewed January 10, 2020)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Michael Johnson and Norris Heintzelman (Lockheed Martin) share several techniques they've implemented to build classification and NER models from scratch. They lead a tour through this space as it applies to NLP and demonstrate their approach and architecture for the following techniques: Weak supervision for news documents: Using rules base classification alongside deep learning system for text classification; Active learning and human in the loop: Explaining how breakthroughs in transfer learning for NLP have impacted their active learning framework for building an LSTM-based relevance model; Creative training sets: Identifying and cleaning already-labeled datasets, training classifier on "only" positive examples; NER adjudication: Combining knowledge from several annotation sources that leverages the strengths of each source. For each of these topics, Michael and Norris outline the theoretical foundation, the implementation architecture, and tools used and discuss the problems they encountered, so you can avoid making the same mistakes."--Resource description page</subfield></datafield><datafield tag="611" ind1="2" ind2="0"><subfield code="a">Strata Conference</subfield><subfield code="c">San Francisco, Calif.)</subfield><subfield code="d">(2019</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business logistics</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Natural Language Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traitement automatique des langues naturelles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logistique (Organisation) ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield><subfield code="0">(OCoLC)fst01892965</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business logistics ; Data processing</subfield><subfield code="0">(OCoLC)fst00842765</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield><subfield code="0">(OCoLC)fst01004795</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield><subfield code="0">(OCoLC)fst01034365</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic videos</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heintzelman, Norris</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">O'Reilly & Associates,</subfield><subfield code="e">Verlag</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/0636920330868/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-048584339 |
illustrated | Not Illustrated |
indexdate | 2025-05-28T09:47:10Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (1 streaming video file (43 min., 17 sec.)) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Johnson, Michael L. VerfasserIn aut NLP from scratch solving the cold start problem for natural language processing Michael Johnson, Norris Heintzelman [Place of publication not identified] O'Reilly Media 2019 1 online resource (1 streaming video file (43 min., 17 sec.)) zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Title from title screen (viewed January 10, 2020) "Michael Johnson and Norris Heintzelman (Lockheed Martin) share several techniques they've implemented to build classification and NER models from scratch. They lead a tour through this space as it applies to NLP and demonstrate their approach and architecture for the following techniques: Weak supervision for news documents: Using rules base classification alongside deep learning system for text classification; Active learning and human in the loop: Explaining how breakthroughs in transfer learning for NLP have impacted their active learning framework for building an LSTM-based relevance model; Creative training sets: Identifying and cleaning already-labeled datasets, training classifier on "only" positive examples; NER adjudication: Combining knowledge from several annotation sources that leverages the strengths of each source. For each of these topics, Michael and Norris outline the theoretical foundation, the implementation architecture, and tools used and discuss the problems they encountered, so you can avoid making the same mistakes."--Resource description page Strata Conference San Francisco, Calif.) (2019 Natural language processing (Computer science) Machine learning Business logistics Data processing Big data Natural Language Processing Traitement automatique des langues naturelles Apprentissage automatique Logistique (Organisation) ; Informatique Données volumineuses Big data (OCoLC)fst01892965 Business logistics ; Data processing (OCoLC)fst00842765 Machine learning (OCoLC)fst01004795 Natural language processing (Computer science) (OCoLC)fst01034365 Electronic videos Heintzelman, Norris MitwirkendeR ctb O'Reilly & Associates, Verlag pbl |
spellingShingle | Johnson, Michael L. NLP from scratch solving the cold start problem for natural language processing Strata Conference San Francisco, Calif.) (2019 Natural language processing (Computer science) Machine learning Business logistics Data processing Big data Natural Language Processing Traitement automatique des langues naturelles Apprentissage automatique Logistique (Organisation) ; Informatique Données volumineuses Big data (OCoLC)fst01892965 Business logistics ; Data processing (OCoLC)fst00842765 Machine learning (OCoLC)fst01004795 Natural language processing (Computer science) (OCoLC)fst01034365 Electronic videos |
subject_GND | (OCoLC)fst01892965 (OCoLC)fst00842765 (OCoLC)fst01004795 (OCoLC)fst01034365 |
title | NLP from scratch solving the cold start problem for natural language processing |
title_auth | NLP from scratch solving the cold start problem for natural language processing |
title_exact_search | NLP from scratch solving the cold start problem for natural language processing |
title_full | NLP from scratch solving the cold start problem for natural language processing Michael Johnson, Norris Heintzelman |
title_fullStr | NLP from scratch solving the cold start problem for natural language processing Michael Johnson, Norris Heintzelman |
title_full_unstemmed | NLP from scratch solving the cold start problem for natural language processing Michael Johnson, Norris Heintzelman |
title_short | NLP from scratch |
title_sort | nlp from scratch solving the cold start problem for natural language processing |
title_sub | solving the cold start problem for natural language processing |
topic | Strata Conference San Francisco, Calif.) (2019 Natural language processing (Computer science) Machine learning Business logistics Data processing Big data Natural Language Processing Traitement automatique des langues naturelles Apprentissage automatique Logistique (Organisation) ; Informatique Données volumineuses Big data (OCoLC)fst01892965 Business logistics ; Data processing (OCoLC)fst00842765 Machine learning (OCoLC)fst01004795 Natural language processing (Computer science) (OCoLC)fst01034365 Electronic videos |
topic_facet | Strata Conference San Francisco, Calif.) (2019 Natural language processing (Computer science) Machine learning Business logistics Data processing Big data Natural Language Processing Traitement automatique des langues naturelles Apprentissage automatique Logistique (Organisation) ; Informatique Données volumineuses Business logistics ; Data processing Electronic videos |
work_keys_str_mv | AT johnsonmichaell nlpfromscratchsolvingthecoldstartproblemfornaturallanguageprocessing AT heintzelmannorris nlpfromscratchsolvingthecoldstartproblemfornaturallanguageprocessing AT oreillyassociates nlpfromscratchsolvingthecoldstartproblemfornaturallanguageprocessing |