Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media
[2017]
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781492028468/?ar |
Zusammenfassung: | Organizations across all industries are attempting to capitalize on the promise of Big Data by using their information assets as a source of competitive advantage. In doing so, they are investing heavily in areas such as analytic tools and new storage capabilities. However, they often neglect the data management layer of the equation: it's not simply about finding an optimal way to store or analyze the data, but it's also vital that you prepare and manage the data for consumption. After all, if the data is inaccurate or incomplete, no consumer will trust or use it. Typically, organizations expend a lot of time on manual data cleaning and vetting to create "master records"--A single, trusted view of an organizational entity such as a customer or supplier-and this is often the area where most help is needed. This report explains just how powerful machine learning can be when applied directly to the creation of master data records. Known as agile data mastering, this method leverages ML's speed and flexibility to quickly create accurate master records that can scale across datasets and domains. You'll learn agile data mastering processes based on the operation of Tamr, an enterprise-scale data unification company that applies human-guided machine learning to this task. This report explores the: Overall importance and many uses of master data records Challenge of creating these records in distributed, complex data environments Differences between traditional master data management (MDM) and agile data mastering Advantages of agile data mastering Technology of Tamr, a data unification company that provides agile data mastering solutions |
Beschreibung: | Online resource; title from title page (Safari, viewed January 8, 2019) |
Umfang: | 1 Online-Ressource (1 volume) illustrations |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047626682 | ||
003 | DE-627-1 | ||
005 | 20240228120631.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2017 xx |||||o 00| ||eng c | ||
035 | |a (DE-627-1)047626682 | ||
035 | |a (DE-599)KEP047626682 | ||
035 | |a (ORHE)9781492028468 | ||
035 | |a (DE-627-1)047626682 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Oram, Andrew |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Agile data mastering |c Andy Oram ; foreword by Tom Davenport |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media |c [2017] | |
264 | 4 | |c ©2018 | |
300 | |a 1 Online-Ressource (1 volume) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Online resource; title from title page (Safari, viewed January 8, 2019) | ||
520 | |a Organizations across all industries are attempting to capitalize on the promise of Big Data by using their information assets as a source of competitive advantage. In doing so, they are investing heavily in areas such as analytic tools and new storage capabilities. However, they often neglect the data management layer of the equation: it's not simply about finding an optimal way to store or analyze the data, but it's also vital that you prepare and manage the data for consumption. After all, if the data is inaccurate or incomplete, no consumer will trust or use it. Typically, organizations expend a lot of time on manual data cleaning and vetting to create "master records"--A single, trusted view of an organizational entity such as a customer or supplier-and this is often the area where most help is needed. This report explains just how powerful machine learning can be when applied directly to the creation of master data records. Known as agile data mastering, this method leverages ML's speed and flexibility to quickly create accurate master records that can scale across datasets and domains. You'll learn agile data mastering processes based on the operation of Tamr, an enterprise-scale data unification company that applies human-guided machine learning to this task. This report explores the: Overall importance and many uses of master data records Challenge of creating these records in distributed, complex data environments Differences between traditional master data management (MDM) and agile data mastering Advantages of agile data mastering Technology of Tamr, a data unification company that provides agile data mastering solutions | ||
650 | 0 | |a Big data | |
650 | 0 | |a Business enterprises |x Data processing | |
650 | 0 | |a Information technology |x Management | |
650 | 0 | |a Database management | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Entreprises ; Informatique | |
650 | 4 | |a Technologie de l'information ; Gestion | |
650 | 4 | |a Bases de données ; Gestion | |
650 | 4 | |a Big data | |
650 | 4 | |a Business enterprises ; Data processing | |
650 | 4 | |a Database management | |
650 | 4 | |a Information technology ; Management | |
700 | 1 | |a Davenport, Thomas H. |d 1954- |e MitwirkendeR |4 ctb | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781492028468/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047626682 |
---|---|
_version_ | 1835903185784406017 |
adam_text | |
any_adam_object | |
author | Oram, Andrew |
author2 | Davenport, Thomas H. 1954- |
author2_role | ctb |
author2_variant | t h d th thd |
author_facet | Oram, Andrew Davenport, Thomas H. 1954- |
author_role | aut |
author_sort | Oram, Andrew |
author_variant | a o ao |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047626682 (DE-599)KEP047626682 (ORHE)9781492028468 |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03339cam a22004932c 4500</leader><controlfield tag="001">ZDB-30-ORH-047626682</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120631.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047626682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047626682</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781492028468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047626682</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oram, Andrew</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Agile data mastering</subfield><subfield code="c">Andy Oram ; foreword by Tom Davenport</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Online resource; title from title page (Safari, viewed January 8, 2019)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Organizations across all industries are attempting to capitalize on the promise of Big Data by using their information assets as a source of competitive advantage. In doing so, they are investing heavily in areas such as analytic tools and new storage capabilities. However, they often neglect the data management layer of the equation: it's not simply about finding an optimal way to store or analyze the data, but it's also vital that you prepare and manage the data for consumption. After all, if the data is inaccurate or incomplete, no consumer will trust or use it. Typically, organizations expend a lot of time on manual data cleaning and vetting to create "master records"--A single, trusted view of an organizational entity such as a customer or supplier-and this is often the area where most help is needed. This report explains just how powerful machine learning can be when applied directly to the creation of master data records. Known as agile data mastering, this method leverages ML's speed and flexibility to quickly create accurate master records that can scale across datasets and domains. You'll learn agile data mastering processes based on the operation of Tamr, an enterprise-scale data unification company that applies human-guided machine learning to this task. This report explores the: Overall importance and many uses of master data records Challenge of creating these records in distributed, complex data environments Differences between traditional master data management (MDM) and agile data mastering Advantages of agile data mastering Technology of Tamr, a data unification company that provides agile data mastering solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business enterprises</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information technology</subfield><subfield code="x">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entreprises ; Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technologie de l'information ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business enterprises ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology ; Management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davenport, Thomas H.</subfield><subfield code="d">1954-</subfield><subfield code="e">MitwirkendeR</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781492028468/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047626682 |
illustrated | Illustrated |
indexdate | 2025-06-25T12:15:15Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | O'Reilly Media |
record_format | marc |
spelling | Oram, Andrew VerfasserIn aut Agile data mastering Andy Oram ; foreword by Tom Davenport First edition. Sebastopol, CA O'Reilly Media [2017] ©2018 1 Online-Ressource (1 volume) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Online resource; title from title page (Safari, viewed January 8, 2019) Organizations across all industries are attempting to capitalize on the promise of Big Data by using their information assets as a source of competitive advantage. In doing so, they are investing heavily in areas such as analytic tools and new storage capabilities. However, they often neglect the data management layer of the equation: it's not simply about finding an optimal way to store or analyze the data, but it's also vital that you prepare and manage the data for consumption. After all, if the data is inaccurate or incomplete, no consumer will trust or use it. Typically, organizations expend a lot of time on manual data cleaning and vetting to create "master records"--A single, trusted view of an organizational entity such as a customer or supplier-and this is often the area where most help is needed. This report explains just how powerful machine learning can be when applied directly to the creation of master data records. Known as agile data mastering, this method leverages ML's speed and flexibility to quickly create accurate master records that can scale across datasets and domains. You'll learn agile data mastering processes based on the operation of Tamr, an enterprise-scale data unification company that applies human-guided machine learning to this task. This report explores the: Overall importance and many uses of master data records Challenge of creating these records in distributed, complex data environments Differences between traditional master data management (MDM) and agile data mastering Advantages of agile data mastering Technology of Tamr, a data unification company that provides agile data mastering solutions Big data Business enterprises Data processing Information technology Management Database management Données volumineuses Entreprises ; Informatique Technologie de l'information ; Gestion Bases de données ; Gestion Business enterprises ; Data processing Information technology ; Management Davenport, Thomas H. 1954- MitwirkendeR ctb |
spellingShingle | Oram, Andrew Agile data mastering Big data Business enterprises Data processing Information technology Management Database management Données volumineuses Entreprises ; Informatique Technologie de l'information ; Gestion Bases de données ; Gestion Business enterprises ; Data processing Information technology ; Management |
title | Agile data mastering |
title_auth | Agile data mastering |
title_exact_search | Agile data mastering |
title_full | Agile data mastering Andy Oram ; foreword by Tom Davenport |
title_fullStr | Agile data mastering Andy Oram ; foreword by Tom Davenport |
title_full_unstemmed | Agile data mastering Andy Oram ; foreword by Tom Davenport |
title_short | Agile data mastering |
title_sort | agile data mastering |
topic | Big data Business enterprises Data processing Information technology Management Database management Données volumineuses Entreprises ; Informatique Technologie de l'information ; Gestion Bases de données ; Gestion Business enterprises ; Data processing Information technology ; Management |
topic_facet | Big data Business enterprises Data processing Information technology Management Database management Données volumineuses Entreprises ; Informatique Technologie de l'information ; Gestion Bases de données ; Gestion Business enterprises ; Data processing Information technology ; Management |
work_keys_str_mv | AT oramandrew agiledatamastering AT davenportthomash agiledatamastering |