Predictive maintenance meets predictive analytics: gathering and analyzing IoT data for manufacturing
"In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will...
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Elektronisch Video |
Sprache: | Englisch |
Veröffentlicht: |
[Place of publication not identified]
O'Reilly
2016
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781491972540/?ar |
Zusammenfassung: | "In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications."--Resource description page. |
Beschreibung: | Title from title screen (viewed September 1, 2016) |
Umfang: | 1 Online-Ressource (1 streaming video file (50 min., 58 sec.)) digital, sound, color |
Internformat
MARC
LEADER | 00000cgm a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047619414 | ||
003 | DE-627-1 | ||
005 | 20240228120143.0 | ||
006 | m o | | | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2016 xx ||| |o o ||eng c | ||
035 | |a (DE-627-1)047619414 | ||
035 | |a (DE-599)KEP047619414 | ||
035 | |a (ORHE)9781491972540 | ||
035 | |a (DE-627-1)047619414 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Dean, Danielle |e RednerIn |4 spk | |
245 | 1 | 0 | |a Predictive maintenance meets predictive analytics |b gathering and analyzing IoT data for manufacturing |c Danielle Dean |
264 | 1 | |a [Place of publication not identified] |b O'Reilly |c 2016 | |
300 | |a 1 Online-Ressource (1 streaming video file (50 min., 58 sec.)) |b digital, sound, color | ||
336 | |a zweidimensionales bewegtes Bild |b tdi |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Title from title screen (viewed September 1, 2016) | ||
520 | |a "In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications."--Resource description page. | ||
650 | 0 | |a Machinery |x Maintenance and repair | |
650 | 0 | |a Information technology |x Management | |
650 | 0 | |a Computer networks |x Maintenance and repair | |
650 | 0 | |a Internet of things | |
650 | 0 | |a Cloud computing | |
650 | 4 | |a Machines ; Entretien et réparations | |
650 | 4 | |a Technologie de l'information ; Gestion | |
650 | 4 | |a Réseaux d'ordinateurs ; Entretien et réparations | |
650 | 4 | |a Internet des objets | |
650 | 4 | |a Infonuagique | |
650 | 4 | |a Cloud computing |0 (OCoLC)fst01745899 | |
650 | 4 | |a Computer networks ; Maintenance and repair |0 (OCoLC)fst00872322 | |
650 | 4 | |a Information technology ; Management |0 (OCoLC)fst00973112 | |
650 | 4 | |a Internet of things |0 (OCoLC)fst01894151 | |
650 | 4 | |a Machinery ; Maintenance and repair |0 (OCoLC)fst01004983 | |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491972540/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
935 | |c vide | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047619414 |
---|---|
_version_ | 1821494950978650112 |
adam_text | |
any_adam_object | |
author2 | Dean, Danielle |
author2_role | spk |
author2_variant | d d dd |
author_facet | Dean, Danielle |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047619414 (DE-599)KEP047619414 (ORHE)9781491972540 |
format | Electronic Video |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02994cgm a22005052 4500</leader><controlfield tag="001">ZDB-30-ORH-047619414</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120143.0</controlfield><controlfield tag="006">m o | | </controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2016 xx ||| |o o ||eng c</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047619414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047619414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491972540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047619414</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dean, Danielle</subfield><subfield code="e">RednerIn</subfield><subfield code="4">spk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predictive maintenance meets predictive analytics</subfield><subfield code="b">gathering and analyzing IoT data for manufacturing</subfield><subfield code="c">Danielle Dean</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Place of publication not identified]</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 streaming video file (50 min., 58 sec.))</subfield><subfield code="b">digital, sound, color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">zweidimensionales bewegtes Bild</subfield><subfield code="b">tdi</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from title screen (viewed September 1, 2016)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications."--Resource description page.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machinery</subfield><subfield code="x">Maintenance and repair</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information technology</subfield><subfield code="x">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer networks</subfield><subfield code="x">Maintenance and repair</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet of things</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machines ; Entretien et réparations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technologie de l'information ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux d'ordinateurs ; Entretien et réparations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet des objets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infonuagique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud computing</subfield><subfield code="0">(OCoLC)fst01745899</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer networks ; Maintenance and repair</subfield><subfield code="0">(OCoLC)fst00872322</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology ; Management</subfield><subfield code="0">(OCoLC)fst00973112</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet of things</subfield><subfield code="0">(OCoLC)fst01894151</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machinery ; Maintenance and repair</subfield><subfield code="0">(OCoLC)fst01004983</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491972540/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="935" ind1=" " ind2=" "><subfield code="c">vide</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047619414 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:22:32Z |
institution | BVB |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 streaming video file (50 min., 58 sec.)) digital, sound, color |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | O'Reilly |
record_format | marc |
spelling | Dean, Danielle RednerIn spk Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing Danielle Dean [Place of publication not identified] O'Reilly 2016 1 Online-Ressource (1 streaming video file (50 min., 58 sec.)) digital, sound, color zweidimensionales bewegtes Bild tdi rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Title from title screen (viewed September 1, 2016) "In a talk aimed at data scientists, students, researchers, and nontechnical professionals, Danielle Dean introduces the landscape and challenges of predictive maintenance applications in the manufacturing industry. Predictive maintenance, a technique to predict when an in-service machine will fail so that maintenance can be planned in advance, encompasses failure prediction, failure diagnosis, failure type classification, and recommendation of maintenance actions after failure. Danielle reviews predictive maintenance problems from the perspectives of both the traditional, reliability-centered maintenance field and IoT applications, discussing problem coverage, applicable predictive models based on data available, and what data must be collected to perform predictive maintenance tasks. You'll learn how to bridge the data-driven approach and the problem-driven approach by articulating what types of data are needed for different predictive maintenance applications."--Resource description page. Machinery Maintenance and repair Information technology Management Computer networks Maintenance and repair Internet of things Cloud computing Machines ; Entretien et réparations Technologie de l'information ; Gestion Réseaux d'ordinateurs ; Entretien et réparations Internet des objets Infonuagique Cloud computing (OCoLC)fst01745899 Computer networks ; Maintenance and repair (OCoLC)fst00872322 Information technology ; Management (OCoLC)fst00973112 Internet of things (OCoLC)fst01894151 Machinery ; Maintenance and repair (OCoLC)fst01004983 |
spellingShingle | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing Machinery Maintenance and repair Information technology Management Computer networks Maintenance and repair Internet of things Cloud computing Machines ; Entretien et réparations Technologie de l'information ; Gestion Réseaux d'ordinateurs ; Entretien et réparations Internet des objets Infonuagique Cloud computing (OCoLC)fst01745899 Computer networks ; Maintenance and repair (OCoLC)fst00872322 Information technology ; Management (OCoLC)fst00973112 Internet of things (OCoLC)fst01894151 Machinery ; Maintenance and repair (OCoLC)fst01004983 |
subject_GND | (OCoLC)fst01745899 (OCoLC)fst00872322 (OCoLC)fst00973112 (OCoLC)fst01894151 (OCoLC)fst01004983 |
title | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing |
title_auth | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing |
title_exact_search | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing |
title_full | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing Danielle Dean |
title_fullStr | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing Danielle Dean |
title_full_unstemmed | Predictive maintenance meets predictive analytics gathering and analyzing IoT data for manufacturing Danielle Dean |
title_short | Predictive maintenance meets predictive analytics |
title_sort | predictive maintenance meets predictive analytics gathering and analyzing iot data for manufacturing |
title_sub | gathering and analyzing IoT data for manufacturing |
topic | Machinery Maintenance and repair Information technology Management Computer networks Maintenance and repair Internet of things Cloud computing Machines ; Entretien et réparations Technologie de l'information ; Gestion Réseaux d'ordinateurs ; Entretien et réparations Internet des objets Infonuagique Cloud computing (OCoLC)fst01745899 Computer networks ; Maintenance and repair (OCoLC)fst00872322 Information technology ; Management (OCoLC)fst00973112 Internet of things (OCoLC)fst01894151 Machinery ; Maintenance and repair (OCoLC)fst01004983 |
topic_facet | Machinery Maintenance and repair Information technology Management Computer networks Maintenance and repair Internet of things Cloud computing Machines ; Entretien et réparations Technologie de l'information ; Gestion Réseaux d'ordinateurs ; Entretien et réparations Internet des objets Infonuagique Computer networks ; Maintenance and repair Information technology ; Management Machinery ; Maintenance and repair |
work_keys_str_mv | AT deandanielle predictivemaintenancemeetspredictiveanalyticsgatheringandanalyzingiotdataformanufacturing |