Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Sebastopol, CA
O'Reilly Media, Inc.
[2017]
|
Edition: | First edition. |
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781491952955/?ar |
Summary: | "Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher. |
Item Description: | Includes bibliographical references and index. - Print version record |
Physical Description: | 1 online resource (298 pages) illustrations |
ISBN: | 9781491952931 1491952938 9781491952917 1491952911 9781491952955 1491952954 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-04761675X | ||
003 | DE-627-1 | ||
005 | 20240228120258.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2017 xx |||||o 00| ||eng c | ||
020 | |a 9781491952931 |c electronic book |9 978-1-4919-5293-1 | ||
020 | |a 1491952938 |c electronic book |9 1-4919-5293-8 | ||
020 | |a 9781491952917 |c electronic book |9 978-1-4919-5291-7 | ||
020 | |a 1491952911 |c electronic book |9 1-4919-5291-1 | ||
020 | |a 9781491952955 |9 978-1-4919-5295-5 | ||
020 | |a 1491952954 |9 1-4919-5295-4 | ||
035 | |a (DE-627-1)04761675X | ||
035 | |a (DE-599)KEP04761675X | ||
035 | |a (ORHE)9781491952955 | ||
035 | |a (DE-627-1)04761675X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a REF |2 bisacsh | |
082 | 0 | |a 001.4/226 |2 23 | |
100 | 1 | |a Bruce, Peter C. |d 1953- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Practical statistics for data scientists |b 50 essential concepts |c Peter Bruce and Andrew Bruce |
246 | 3 | 3 | |a 50 essential concepts |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc. |c [2017] | |
264 | 4 | |c ©2017 | |
300 | |a 1 online resource (298 pages) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Print version record | ||
520 | |a "Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher. | ||
650 | 0 | |a Mathematical analysis |x Statistical methods | |
650 | 0 | |a Quantitative research |x Statistical methods | |
650 | 0 | |a Big data |x Mathematics | |
650 | 4 | |a Analyse mathématique ; Méthodes statistiques | |
650 | 4 | |a Recherche quantitative ; Méthodes statistiques | |
650 | 4 | |a Données volumineuses ; Mathématiques | |
650 | 4 | |a REFERENCE ; Questions & Answers | |
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics ; Data processing | |
650 | 4 | |a Data Mining | |
650 | 4 | |a Datenanalyse | |
650 | 4 | |a Statistik | |
700 | 1 | |a Bruce, Andrew |d 1958- |e VerfasserIn |4 aut | |
776 | 1 | |z 9781491952962 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781491952962 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491952955/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-04761675X |
---|---|
_version_ | 1833357078136094721 |
adam_text | |
any_adam_object | |
author | Bruce, Peter C. 1953- Bruce, Andrew 1958- |
author_facet | Bruce, Peter C. 1953- Bruce, Andrew 1958- |
author_role | aut aut |
author_sort | Bruce, Peter C. 1953- |
author_variant | p c b pc pcb a b ab |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)04761675X (DE-599)KEP04761675X (ORHE)9781491952955 |
dewey-full | 001.4/226 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001.4/226 |
dewey-search | 001.4/226 |
dewey-sort | 11.4 3226 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03534cam a22006252c 4500</leader><controlfield tag="001">ZDB-30-ORH-04761675X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120258.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491952931</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4919-5293-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491952938</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4919-5293-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491952917</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4919-5291-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491952911</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4919-5291-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491952955</subfield><subfield code="9">978-1-4919-5295-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491952954</subfield><subfield code="9">1-4919-5295-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04761675X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP04761675X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491952955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04761675X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">REF</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.4/226</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruce, Peter C.</subfield><subfield code="d">1953-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Practical statistics for data scientists</subfield><subfield code="b">50 essential concepts</subfield><subfield code="c">Peter Bruce and Andrew Bruce</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">50 essential concepts</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (298 pages)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Print version record</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical analysis</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse mathématique ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recherche quantitative ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses ; Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">REFERENCE ; Questions & Answers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics ; Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenanalyse</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruce, Andrew</subfield><subfield code="d">1958-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781491952962</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781491952962</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491952955/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-04761675X |
illustrated | Illustrated |
indexdate | 2025-05-28T09:45:58Z |
institution | BVB |
isbn | 9781491952931 1491952938 9781491952917 1491952911 9781491952955 1491952954 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 online resource (298 pages) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Bruce, Peter C. 1953- VerfasserIn aut Practical statistics for data scientists 50 essential concepts Peter Bruce and Andrew Bruce 50 essential concepts First edition. Sebastopol, CA O'Reilly Media, Inc. [2017] ©2017 1 online resource (298 pages) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Print version record "Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher. Mathematical analysis Statistical methods Quantitative research Statistical methods Big data Mathematics Analyse mathématique ; Méthodes statistiques Recherche quantitative ; Méthodes statistiques Données volumineuses ; Mathématiques REFERENCE ; Questions & Answers Statistics Statistics ; Data processing Data Mining Datenanalyse Statistik Bruce, Andrew 1958- VerfasserIn aut 9781491952962 Erscheint auch als Druck-Ausgabe 9781491952962 |
spellingShingle | Bruce, Peter C. 1953- Bruce, Andrew 1958- Practical statistics for data scientists 50 essential concepts Mathematical analysis Statistical methods Quantitative research Statistical methods Big data Mathematics Analyse mathématique ; Méthodes statistiques Recherche quantitative ; Méthodes statistiques Données volumineuses ; Mathématiques REFERENCE ; Questions & Answers Statistics Statistics ; Data processing Data Mining Datenanalyse Statistik |
title | Practical statistics for data scientists 50 essential concepts |
title_alt | 50 essential concepts |
title_auth | Practical statistics for data scientists 50 essential concepts |
title_exact_search | Practical statistics for data scientists 50 essential concepts |
title_full | Practical statistics for data scientists 50 essential concepts Peter Bruce and Andrew Bruce |
title_fullStr | Practical statistics for data scientists 50 essential concepts Peter Bruce and Andrew Bruce |
title_full_unstemmed | Practical statistics for data scientists 50 essential concepts Peter Bruce and Andrew Bruce |
title_short | Practical statistics for data scientists |
title_sort | practical statistics for data scientists 50 essential concepts |
title_sub | 50 essential concepts |
topic | Mathematical analysis Statistical methods Quantitative research Statistical methods Big data Mathematics Analyse mathématique ; Méthodes statistiques Recherche quantitative ; Méthodes statistiques Données volumineuses ; Mathématiques REFERENCE ; Questions & Answers Statistics Statistics ; Data processing Data Mining Datenanalyse Statistik |
topic_facet | Mathematical analysis Statistical methods Quantitative research Statistical methods Big data Mathematics Analyse mathématique ; Méthodes statistiques Recherche quantitative ; Méthodes statistiques Données volumineuses ; Mathématiques REFERENCE ; Questions & Answers Statistics Statistics ; Data processing Data Mining Datenanalyse Statistik |
work_keys_str_mv | AT brucepeterc practicalstatisticsfordatascientists50essentialconcepts AT bruceandrew practicalstatisticsfordatascientists50essentialconcepts AT brucepeterc 50essentialconcepts AT bruceandrew 50essentialconcepts |