Data science at the command line: facing the future with time-tested tools
This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started--whether yo...
Saved in:
Main Author: | |
---|---|
Other Authors: | , , , |
Format: | Electronic eBook |
Language: | English |
Published: |
Sebastopol, California
O'Reilly
2015
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9781491947845/?ar |
Summary: | This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms. |
Item Description: | Includes bibliographical references and index. - Online resource; title from PDF title page (ebrary, viewed October 11, 2014) |
Physical Description: | 1 Online-Ressource (212 Seiten) Illustrationen (some color) |
ISBN: | 9781491947821 1491947829 1491947853 9781491947852 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-04761627X | ||
003 | DE-627-1 | ||
005 | 20240228115653.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2015 xx |||||o 00| ||eng c | ||
020 | |a 9781491947821 |c e-book |9 978-1-4919-4782-1 | ||
020 | |a 1491947829 |c e-book |9 1-4919-4782-9 | ||
020 | |a 1491947853 |9 1-4919-4785-3 | ||
020 | |a 9781491947852 |9 978-1-4919-4785-2 | ||
035 | |a (DE-627-1)04761627X | ||
035 | |a (DE-599)KEP04761627X | ||
035 | |a (ORHE)9781491947845 | ||
035 | |a (DE-627-1)04761627X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.7565 |2 23 | |
100 | 1 | |a Janssens, Jeroen |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data science at the command line |b facing the future with time-tested tools |c Jeroen Janssens ; Mike Loukides, Ann Spencer, and Marie Beaugureau, editors ; Matthew Hacker, production editor ; Kiel Van Horn, copyeditor |
264 | 1 | |a Sebastopol, California |b O'Reilly |c 2015 | |
264 | 4 | |c ©2015 | |
300 | |a 1 Online-Ressource (212 Seiten) |b Illustrationen (some color) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from PDF title page (ebrary, viewed October 11, 2014) | ||
520 | |a This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms. | ||
650 | 0 | |a Database management | |
650 | 4 | |a Bases de données ; Gestion | |
650 | 4 | |a Database management | |
700 | 1 | |a Spencer, Ann |e HerausgeberIn |4 edt | |
700 | 1 | |a Beaugureau, Marie |e HerausgeberIn |4 edt | |
700 | 1 | |a Hacker, Matthew |e HerausgeberIn |4 edt | |
700 | 1 | |a Horn, Kiel Van |e HerausgeberIn |4 edt | |
776 | 1 | |z 9781491947852 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781491947852 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491947845/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-04761627X |
---|---|
_version_ | 1831287088082845696 |
adam_text | |
any_adam_object | |
author | Janssens, Jeroen |
author2 | Spencer, Ann Beaugureau, Marie Hacker, Matthew Horn, Kiel Van |
author2_role | edt edt edt edt |
author2_variant | a s as m b mb m h mh k v h kv kvh |
author_facet | Janssens, Jeroen Spencer, Ann Beaugureau, Marie Hacker, Matthew Horn, Kiel Van |
author_role | aut |
author_sort | Janssens, Jeroen |
author_variant | j j jj |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)04761627X (DE-599)KEP04761627X (ORHE)9781491947845 |
dewey-full | 005.7565 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7565 |
dewey-search | 005.7565 |
dewey-sort | 15.7565 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03145cam a22004932c 4500</leader><controlfield tag="001">ZDB-30-ORH-04761627X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491947821</subfield><subfield code="c">e-book</subfield><subfield code="9">978-1-4919-4782-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491947829</subfield><subfield code="c">e-book</subfield><subfield code="9">1-4919-4782-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491947853</subfield><subfield code="9">1-4919-4785-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491947852</subfield><subfield code="9">978-1-4919-4785-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04761627X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP04761627X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491947845</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04761627X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7565</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Janssens, Jeroen</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data science at the command line</subfield><subfield code="b">facing the future with time-tested tools</subfield><subfield code="c">Jeroen Janssens ; Mike Loukides, Ann Spencer, and Marie Beaugureau, editors ; Matthew Hacker, production editor ; Kiel Van Horn, copyeditor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, California</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2015</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (212 Seiten)</subfield><subfield code="b">Illustrationen (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from PDF title page (ebrary, viewed October 11, 2014)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bases de données ; Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spencer, Ann</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beaugureau, Marie</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hacker, Matthew</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horn, Kiel Van</subfield><subfield code="e">HerausgeberIn</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781491947852</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781491947852</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491947845/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-04761627X |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:24:21Z |
institution | BVB |
isbn | 9781491947821 1491947829 1491947853 9781491947852 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (212 Seiten) Illustrationen (some color) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | O'Reilly |
record_format | marc |
spelling | Janssens, Jeroen VerfasserIn aut Data science at the command line facing the future with time-tested tools Jeroen Janssens ; Mike Loukides, Ann Spencer, and Marie Beaugureau, editors ; Matthew Hacker, production editor ; Kiel Van Horn, copyeditor Sebastopol, California O'Reilly 2015 ©2015 1 Online-Ressource (212 Seiten) Illustrationen (some color) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from PDF title page (ebrary, viewed October 11, 2014) This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data. To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools. Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line. Obtain data from websites, APIs, databases, and spreadsheets Perform scrub operations on plain text, CSV, HTML/XML, and JSON Explore data, compute descriptive statistics, and create visualizations Manage your data science workflow using Drake Create reusable tools from one-liners and existing Python or R code Parallelize and distribute data-intensive pipelines using GNU Parallel Model data with dimensionality reduction, clustering, regression, and classification algorithms. Database management Bases de données ; Gestion Spencer, Ann HerausgeberIn edt Beaugureau, Marie HerausgeberIn edt Hacker, Matthew HerausgeberIn edt Horn, Kiel Van HerausgeberIn edt 9781491947852 Erscheint auch als Druck-Ausgabe 9781491947852 |
spellingShingle | Janssens, Jeroen Data science at the command line facing the future with time-tested tools Database management Bases de données ; Gestion |
title | Data science at the command line facing the future with time-tested tools |
title_auth | Data science at the command line facing the future with time-tested tools |
title_exact_search | Data science at the command line facing the future with time-tested tools |
title_full | Data science at the command line facing the future with time-tested tools Jeroen Janssens ; Mike Loukides, Ann Spencer, and Marie Beaugureau, editors ; Matthew Hacker, production editor ; Kiel Van Horn, copyeditor |
title_fullStr | Data science at the command line facing the future with time-tested tools Jeroen Janssens ; Mike Loukides, Ann Spencer, and Marie Beaugureau, editors ; Matthew Hacker, production editor ; Kiel Van Horn, copyeditor |
title_full_unstemmed | Data science at the command line facing the future with time-tested tools Jeroen Janssens ; Mike Loukides, Ann Spencer, and Marie Beaugureau, editors ; Matthew Hacker, production editor ; Kiel Van Horn, copyeditor |
title_short | Data science at the command line |
title_sort | data science at the command line facing the future with time tested tools |
title_sub | facing the future with time-tested tools |
topic | Database management Bases de données ; Gestion |
topic_facet | Database management Bases de données ; Gestion |
work_keys_str_mv | AT janssensjeroen datascienceatthecommandlinefacingthefuturewithtimetestedtools AT spencerann datascienceatthecommandlinefacingthefuturewithtimetestedtools AT beaugureaumarie datascienceatthecommandlinefacingthefuturewithtimetestedtools AT hackermatthew datascienceatthecommandlinefacingthefuturewithtimetestedtools AT hornkielvan datascienceatthecommandlinefacingthefuturewithtimetestedtools |