Deep learning: a practitioner's approach

How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Patterson, Josh (VerfasserIn), Gibson, Adam 1989- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Sebastopol, CA O'Reilly Media, Inc. 2017
Ausgabe:First edition.
Schlagwörter:
Links:https://learning.oreilly.com/library/view/-/9781491924570/?ar
Zusammenfassung:How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.
Beschreibung:Includes index. - Online resource; title from PDF title page (EBSCO, viewed August 24, 2017)
Umfang:1 Online-Ressource (507 Seiten) color illustrations
ISBN:9781491914236
1491914238
9781491914212
1491914211
9781491924570