Deep learning: a practitioner's approach
How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, par...
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Sebastopol, CA
O'Reilly Media, Inc.
2017
|
Ausgabe: | First edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781491924570/?ar |
Zusammenfassung: | How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. |
Beschreibung: | Includes index. - Online resource; title from PDF title page (EBSCO, viewed August 24, 2017) |
Umfang: | 1 Online-Ressource (507 Seiten) color illustrations |
ISBN: | 9781491914236 1491914238 9781491914212 1491914211 9781491924570 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047613513 | ||
003 | DE-627-1 | ||
005 | 20240228120321.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2017 xx |||||o 00| ||eng c | ||
020 | |a 9781491914236 |c electronic bk. |9 978-1-4919-1423-6 | ||
020 | |a 1491914238 |c electronic bk. |9 1-4919-1423-8 | ||
020 | |a 9781491914212 |c electronic bk. |9 978-1-4919-1421-2 | ||
020 | |a 1491914211 |c electronic bk. |9 1-4919-1421-1 | ||
020 | |a 9781491924570 |9 978-1-4919-2457-0 | ||
035 | |a (DE-627-1)047613513 | ||
035 | |a (DE-599)KEP047613513 | ||
035 | |a (ORHE)9781491924570 | ||
035 | |a (DE-627-1)047613513 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
082 | 0 | |a 006.31 |2 23 | |
100 | 1 | |a Patterson, Josh |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Deep learning |b a practitioner's approach |c Josh Patterson and Adam Gibson |
250 | |a First edition. | ||
264 | 1 | |a Sebastopol, CA |b O'Reilly Media, Inc. |c 2017 | |
264 | 4 | |c ©2017 | |
300 | |a 1 Online-Ressource (507 Seiten) |b color illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index. - Online resource; title from PDF title page (EBSCO, viewed August 24, 2017) | ||
520 | |a How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. | ||
650 | 0 | |a Machine learning | |
650 | 0 | |a Artificial intelligence | |
650 | 0 | |a Neural networks (Computer science) | |
650 | 2 | |a Artificial Intelligence | |
650 | 2 | |a Neural Networks, Computer | |
650 | 2 | |a Machine Learning | |
650 | 4 | |a Apprentissage automatique | |
650 | 4 | |a Intelligence artificielle | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a artificial intelligence | |
650 | 4 | |a COMPUTERS ; General | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
700 | 1 | |a Gibson, Adam |d 1989- |e VerfasserIn |4 aut | |
776 | 1 | |z 1491914254 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 1491914254 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781491924570/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047613513 |
---|---|
_version_ | 1821494872710840320 |
adam_text | |
any_adam_object | |
author | Patterson, Josh Gibson, Adam 1989- |
author_facet | Patterson, Josh Gibson, Adam 1989- |
author_role | aut aut |
author_sort | Patterson, Josh |
author_variant | j p jp a g ag |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047613513 (DE-599)KEP047613513 (ORHE)9781491924570 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02881cam a22006252 4500</leader><controlfield tag="001">ZDB-30-ORH-047613513</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491914236</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4919-1423-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491914238</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4919-1423-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491914212</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4919-1421-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1491914211</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4919-1421-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781491924570</subfield><subfield code="9">978-1-4919-2457-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047613513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047613513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781491924570</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047613513</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Patterson, Josh</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="b">a practitioner's approach</subfield><subfield code="c">Josh Patterson and Adam Gibson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Sebastopol, CA</subfield><subfield code="b">O'Reilly Media, Inc.</subfield><subfield code="c">2017</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (507 Seiten)</subfield><subfield code="b">color illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Online resource; title from PDF title page (EBSCO, viewed August 24, 2017)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Neural Networks, Computer</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; General</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gibson, Adam</subfield><subfield code="d">1989-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">1491914254</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">1491914254</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781491924570/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047613513 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:17Z |
institution | BVB |
isbn | 9781491914236 1491914238 9781491914212 1491914211 9781491924570 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (507 Seiten) color illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | O'Reilly Media, Inc. |
record_format | marc |
spelling | Patterson, Josh VerfasserIn aut Deep learning a practitioner's approach Josh Patterson and Adam Gibson First edition. Sebastopol, CA O'Reilly Media, Inc. 2017 ©2017 1 Online-Ressource (507 Seiten) color illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index. - Online resource; title from PDF title page (EBSCO, viewed August 24, 2017) How can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J. Machine learning Artificial intelligence Neural networks (Computer science) Artificial Intelligence Neural Networks, Computer Machine Learning Apprentissage automatique Intelligence artificielle Réseaux neuronaux (Informatique) artificial intelligence COMPUTERS ; General Gibson, Adam 1989- VerfasserIn aut 1491914254 Erscheint auch als Druck-Ausgabe 1491914254 |
spellingShingle | Patterson, Josh Gibson, Adam 1989- Deep learning a practitioner's approach Machine learning Artificial intelligence Neural networks (Computer science) Artificial Intelligence Neural Networks, Computer Machine Learning Apprentissage automatique Intelligence artificielle Réseaux neuronaux (Informatique) artificial intelligence COMPUTERS ; General |
title | Deep learning a practitioner's approach |
title_auth | Deep learning a practitioner's approach |
title_exact_search | Deep learning a practitioner's approach |
title_full | Deep learning a practitioner's approach Josh Patterson and Adam Gibson |
title_fullStr | Deep learning a practitioner's approach Josh Patterson and Adam Gibson |
title_full_unstemmed | Deep learning a practitioner's approach Josh Patterson and Adam Gibson |
title_short | Deep learning |
title_sort | deep learning a practitioner s approach |
title_sub | a practitioner's approach |
topic | Machine learning Artificial intelligence Neural networks (Computer science) Artificial Intelligence Neural Networks, Computer Machine Learning Apprentissage automatique Intelligence artificielle Réseaux neuronaux (Informatique) artificial intelligence COMPUTERS ; General |
topic_facet | Machine learning Artificial intelligence Neural networks (Computer science) Artificial Intelligence Neural Networks, Computer Machine Learning Apprentissage automatique Intelligence artificielle Réseaux neuronaux (Informatique) artificial intelligence COMPUTERS ; General |
work_keys_str_mv | AT pattersonjosh deeplearningapractitionersapproach AT gibsonadam deeplearningapractitionersapproach |