Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
New York, NY
Apress
[2018]
|
Ausgabe: | Second edition. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781484239131/?ar |
Zusammenfassung: | Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. |
Beschreibung: | Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 26, 2023) |
Umfang: | 1 Online-Ressource (xix, 569 pages) illustrations (some color) |
ISBN: | 9781484239131 148423913X |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047608986 | ||
003 | DE-627-1 | ||
005 | 20240228120550.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2018 xx |||||o 00| ||eng c | ||
020 | |a 9781484239131 |c electronic book |9 978-1-4842-3913-1 | ||
020 | |a 148423913X |c electronic book |9 1-4842-3913-X | ||
035 | |a (DE-627-1)047608986 | ||
035 | |a (DE-599)KEP047608986 | ||
035 | |a (ORHE)9781484239131 | ||
035 | |a (DE-627-1)047608986 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a COM |2 bisacsh | |
072 | 7 | |a UMX |2 bicssc | |
082 | 0 | |a 005.13/3 |2 23 | |
100 | 1 | |a Nelli, Fabio |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Python data analytics |b with Pandas, NumPy, and Matplotlib |c Fabio Nelli |
250 | |a Second edition. | ||
264 | 1 | |a New York, NY |b Apress |c [2018] | |
300 | |a 1 Online-Ressource (xix, 569 pages) |b illustrations (some color) | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 26, 2023) | ||
520 | |a Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. | ||
650 | 0 | |a Python (Computer program language) | |
650 | 0 | |a Data mining | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Python (Langage de programmation) | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a COMPUTERS ; Programming Languages ; Python | |
650 | 4 | |a Data mining | |
650 | 4 | |a Python (Computer program language) | |
776 | 1 | |z 9781484239124 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781484239124 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781484239131/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047608986 |
---|---|
_version_ | 1835903187618365440 |
adam_text | |
any_adam_object | |
author | Nelli, Fabio |
author_facet | Nelli, Fabio |
author_role | aut |
author_sort | Nelli, Fabio |
author_variant | f n fn |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047608986 (DE-599)KEP047608986 (ORHE)9781484239131 |
dewey-full | 005.13/3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.13/3 |
dewey-search | 005.13/3 |
dewey-sort | 15.13 13 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
edition | Second edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02884cam a22005052c 4500</leader><controlfield tag="001">ZDB-30-ORH-047608986</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120550.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484239131</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-4842-3913-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">148423913X</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-4842-3913-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047608986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047608986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781484239131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047608986</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">UMX</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.13/3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nelli, Fabio</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python data analytics</subfield><subfield code="b">with Pandas, NumPy, and Matplotlib</subfield><subfield code="c">Fabio Nelli</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Apress</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 569 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 26, 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COMPUTERS ; Programming Languages ; Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781484239124</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781484239124</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781484239131/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047608986 |
illustrated | Illustrated |
indexdate | 2025-06-25T12:15:17Z |
institution | BVB |
isbn | 9781484239131 148423913X |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 569 pages) illustrations (some color) |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Apress |
record_format | marc |
spelling | Nelli, Fabio VerfasserIn aut Python data analytics with Pandas, NumPy, and Matplotlib Fabio Nelli Second edition. New York, NY Apress [2018] 1 Online-Ressource (xix, 569 pages) illustrations (some color) Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on June 26, 2023) Explore the latest Python tools and techniques to help you tackle the world of data acquisition and analysis. You'll review scientific computing with NumPy, visualization with matplotlib, and machine learning with scikit-learn. This revision is fully updated with new content on social media data analysis, image analysis with OpenCV, and deep learning libraries. Each chapter includes multiple examples demonstrating how to work with each library. At its heart lies the coverage of pandas, for high-performance, easy-to-use data structures and tools for data manipulation Author Fabio Nelli expertly demonstrates using Python for data processing, management, and information retrieval. Later chapters apply what you've learned to handwriting recognition and extending graphical capabilities with the JavaScript D3 library. Whether you are dealing with sales data, investment data, medical data, web page usage, or other data sets, Python Data Analytics, Second Edition is an invaluable reference with its examples of storing, accessing, and analyzing data. Python (Computer program language) Data mining Data Mining Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS ; Programming Languages ; Python 9781484239124 Erscheint auch als Druck-Ausgabe 9781484239124 |
spellingShingle | Nelli, Fabio Python data analytics with Pandas, NumPy, and Matplotlib Python (Computer program language) Data mining Data Mining Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS ; Programming Languages ; Python |
title | Python data analytics with Pandas, NumPy, and Matplotlib |
title_auth | Python data analytics with Pandas, NumPy, and Matplotlib |
title_exact_search | Python data analytics with Pandas, NumPy, and Matplotlib |
title_full | Python data analytics with Pandas, NumPy, and Matplotlib Fabio Nelli |
title_fullStr | Python data analytics with Pandas, NumPy, and Matplotlib Fabio Nelli |
title_full_unstemmed | Python data analytics with Pandas, NumPy, and Matplotlib Fabio Nelli |
title_short | Python data analytics |
title_sort | python data analytics with pandas numpy and matplotlib |
title_sub | with Pandas, NumPy, and Matplotlib |
topic | Python (Computer program language) Data mining Data Mining Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS ; Programming Languages ; Python |
topic_facet | Python (Computer program language) Data mining Data Mining Python (Langage de programmation) Exploration de données (Informatique) COMPUTERS ; Programming Languages ; Python |
work_keys_str_mv | AT nellifabio pythondataanalyticswithpandasnumpyandmatplotlib |