Nonparametric finance:
An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and f...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken, NJ
John Wiley & Sons, Inc.
[2018]
|
Schriftenreihe: | Wiley series in probability and statistics
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781119409106/?ar |
Zusammenfassung: | An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and finance professionals with a foundation in nonparametric function estimation and the underlying mathematics. Combining practical applications, mathematically rigorous presentation, and statistical data analysis into a single volume, this book presents detailed instruction in discrete chapters that allow readers to dip in as needed without reading from beginning to end. Coverage includes statistical finance, risk management, portfolio management, and securities pricing to provide a practical knowledge base, and the introductory chapter introduces basic finance concepts for readers with a strictly mathematical background. Economic significance is emphasized over statistical significance throughout, and R code is provided to help readers reproduce the research, computations, and figures being discussed. Strong graphical content clarifies the methods and demonstrates essential visualization techniques, while deep mathematical and statistical insight backs up practical applications. Written for the leading edge of finance, Nonparametric Finance: - Introduces basic statistical finance concepts, including univariate and multivariate data analysis, time series analysis, and prediction - Provides risk management guidance through volatility prediction, quantiles, and value-at-risk - Examines portfolio theory, performance measurement, Markowitz portfolios, dynamic portfolio selection, and more - Discusses fundamental theorems of asset pricing, Black-Scholes pricing and hedging, quadratic pricing and hedging, option portfolios, interest rate derivatives, and other asset pricing principles - Provides supplementary R code and numerous graphics to reinforce complex content Nonparametric function estimation has received little attention in the context of risk management and option pricing, despite its useful applications and benefits. This book provides the essential background and practical knowledge needed to take full advantage of these little-used methods, and turn them into real-world advantage. Jussi KlemelA, PhD, is Adjunct Professor at the University of Oulu. His research interests include nonparametric function estimation, density estimation, and data visualization. He is the author of Smoothing of Multivariate Data: Density Estimation and Visualization and Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance. |
Beschreibung: | Includes bibliographical references and index. - Print version record and CIP data provided by publisher |
Umfang: | 1 Online-Ressource |
ISBN: | 9781119409120 1119409128 9781119409113 111940911X 9781119409137 1119409136 1119409101 9781119409106 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047554789 | ||
003 | DE-627-1 | ||
005 | 20240228120335.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2018 xx |||||o 00| ||eng c | ||
020 | |a 9781119409120 |c epub |9 978-1-119-40912-0 | ||
020 | |a 1119409128 |9 1-119-40912-8 | ||
020 | |a 9781119409113 |c pdf |9 978-1-119-40911-3 | ||
020 | |a 111940911X |9 1-119-40911-X | ||
020 | |a 9781119409137 |9 978-1-119-40913-7 | ||
020 | |a 1119409136 |9 1-119-40913-6 | ||
020 | |a 1119409101 |9 1-119-40910-1 | ||
020 | |a 9781119409106 |9 978-1-119-40910-6 | ||
020 | |a 9781119409106 |9 978-1-119-40910-6 | ||
035 | |a (DE-627-1)047554789 | ||
035 | |a (DE-599)KEP047554789 | ||
035 | |a (ORHE)9781119409106 | ||
035 | |a (DE-627-1)047554789 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a BUS |2 bisacsh | |
082 | 0 | |a 332.01/51954 |2 23 | |
100 | 1 | |a Klemelä, Jussi |d 1965- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Nonparametric finance |c by Jussi Sakari Klemelä |
264 | 1 | |a Hoboken, NJ |b John Wiley & Sons, Inc. |c [2018] | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley series in probability and statistics | |
500 | |a Includes bibliographical references and index. - Print version record and CIP data provided by publisher | ||
520 | |a An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and finance professionals with a foundation in nonparametric function estimation and the underlying mathematics. Combining practical applications, mathematically rigorous presentation, and statistical data analysis into a single volume, this book presents detailed instruction in discrete chapters that allow readers to dip in as needed without reading from beginning to end. Coverage includes statistical finance, risk management, portfolio management, and securities pricing to provide a practical knowledge base, and the introductory chapter introduces basic finance concepts for readers with a strictly mathematical background. Economic significance is emphasized over statistical significance throughout, and R code is provided to help readers reproduce the research, computations, and figures being discussed. Strong graphical content clarifies the methods and demonstrates essential visualization techniques, while deep mathematical and statistical insight backs up practical applications. Written for the leading edge of finance, Nonparametric Finance: - Introduces basic statistical finance concepts, including univariate and multivariate data analysis, time series analysis, and prediction - Provides risk management guidance through volatility prediction, quantiles, and value-at-risk - Examines portfolio theory, performance measurement, Markowitz portfolios, dynamic portfolio selection, and more - Discusses fundamental theorems of asset pricing, Black-Scholes pricing and hedging, quadratic pricing and hedging, option portfolios, interest rate derivatives, and other asset pricing principles - Provides supplementary R code and numerous graphics to reinforce complex content Nonparametric function estimation has received little attention in the context of risk management and option pricing, despite its useful applications and benefits. This book provides the essential background and practical knowledge needed to take full advantage of these little-used methods, and turn them into real-world advantage. Jussi KlemelA, PhD, is Adjunct Professor at the University of Oulu. His research interests include nonparametric function estimation, density estimation, and data visualization. He is the author of Smoothing of Multivariate Data: Density Estimation and Visualization and Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance. | ||
650 | 0 | |a Finance |x Statistical methods | |
650 | 0 | |a Finance |x Mathematical models | |
650 | 4 | |a Finances ; Méthodes statistiques | |
650 | 4 | |a Finances ; Modèles mathématiques | |
650 | 4 | |a BUSINESS & ECONOMICS ; Finance | |
650 | 4 | |a Finance ; Mathematical models | |
650 | 4 | |a Finance ; Statistical methods | |
776 | 1 | |z 9781119409106 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781119409106 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781119409106/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047554789 |
---|---|
_version_ | 1821494882791849984 |
adam_text | |
any_adam_object | |
author | Klemelä, Jussi 1965- |
author_facet | Klemelä, Jussi 1965- |
author_role | aut |
author_sort | Klemelä, Jussi 1965- |
author_variant | j k jk |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047554789 (DE-599)KEP047554789 (ORHE)9781119409106 |
dewey-full | 332.01/51954 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.01/51954 |
dewey-search | 332.01/51954 |
dewey-sort | 3332.01 551954 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04715cam a22005652 4500</leader><controlfield tag="001">ZDB-30-ORH-047554789</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228120335.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119409120</subfield><subfield code="c">epub</subfield><subfield code="9">978-1-119-40912-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119409128</subfield><subfield code="9">1-119-40912-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119409113</subfield><subfield code="c">pdf</subfield><subfield code="9">978-1-119-40911-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111940911X</subfield><subfield code="9">1-119-40911-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119409137</subfield><subfield code="9">978-1-119-40913-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119409136</subfield><subfield code="9">1-119-40913-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119409101</subfield><subfield code="9">1-119-40910-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119409106</subfield><subfield code="9">978-1-119-40910-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119409106</subfield><subfield code="9">978-1-119-40910-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047554789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047554789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781119409106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047554789</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">BUS</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.01/51954</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klemelä, Jussi</subfield><subfield code="d">1965-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonparametric finance</subfield><subfield code="c">by Jussi Sakari Klemelä</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">John Wiley & Sons, Inc.</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series in probability and statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Print version record and CIP data provided by publisher</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and finance professionals with a foundation in nonparametric function estimation and the underlying mathematics. Combining practical applications, mathematically rigorous presentation, and statistical data analysis into a single volume, this book presents detailed instruction in discrete chapters that allow readers to dip in as needed without reading from beginning to end. Coverage includes statistical finance, risk management, portfolio management, and securities pricing to provide a practical knowledge base, and the introductory chapter introduces basic finance concepts for readers with a strictly mathematical background. Economic significance is emphasized over statistical significance throughout, and R code is provided to help readers reproduce the research, computations, and figures being discussed. Strong graphical content clarifies the methods and demonstrates essential visualization techniques, while deep mathematical and statistical insight backs up practical applications. Written for the leading edge of finance, Nonparametric Finance: - Introduces basic statistical finance concepts, including univariate and multivariate data analysis, time series analysis, and prediction - Provides risk management guidance through volatility prediction, quantiles, and value-at-risk - Examines portfolio theory, performance measurement, Markowitz portfolios, dynamic portfolio selection, and more - Discusses fundamental theorems of asset pricing, Black-Scholes pricing and hedging, quadratic pricing and hedging, option portfolios, interest rate derivatives, and other asset pricing principles - Provides supplementary R code and numerous graphics to reinforce complex content Nonparametric function estimation has received little attention in the context of risk management and option pricing, despite its useful applications and benefits. This book provides the essential background and practical knowledge needed to take full advantage of these little-used methods, and turn them into real-world advantage. Jussi KlemelA, PhD, is Adjunct Professor at the University of Oulu. His research interests include nonparametric function estimation, density estimation, and data visualization. He is the author of Smoothing of Multivariate Data: Density Estimation and Visualization and Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finance</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finance</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finances ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finances ; Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BUSINESS & ECONOMICS ; Finance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance ; Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance ; Statistical methods</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781119409106</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781119409106</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781119409106/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047554789 |
illustrated | Not Illustrated |
indexdate | 2025-01-17T11:21:27Z |
institution | BVB |
isbn | 9781119409120 1119409128 9781119409113 111940911X 9781119409137 1119409136 1119409101 9781119409106 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | John Wiley & Sons, Inc. |
record_format | marc |
series2 | Wiley series in probability and statistics |
spelling | Klemelä, Jussi 1965- VerfasserIn aut Nonparametric finance by Jussi Sakari Klemelä Hoboken, NJ John Wiley & Sons, Inc. [2018] 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Wiley series in probability and statistics Includes bibliographical references and index. - Print version record and CIP data provided by publisher An Introduction to Machine Learning in Finance, With Mathematical Background, Data Visualization, and R Nonparametric function estimation is an important part of machine learning, which is becoming increasingly important in quantitative finance. Nonparametric Finance provides graduate students and finance professionals with a foundation in nonparametric function estimation and the underlying mathematics. Combining practical applications, mathematically rigorous presentation, and statistical data analysis into a single volume, this book presents detailed instruction in discrete chapters that allow readers to dip in as needed without reading from beginning to end. Coverage includes statistical finance, risk management, portfolio management, and securities pricing to provide a practical knowledge base, and the introductory chapter introduces basic finance concepts for readers with a strictly mathematical background. Economic significance is emphasized over statistical significance throughout, and R code is provided to help readers reproduce the research, computations, and figures being discussed. Strong graphical content clarifies the methods and demonstrates essential visualization techniques, while deep mathematical and statistical insight backs up practical applications. Written for the leading edge of finance, Nonparametric Finance: - Introduces basic statistical finance concepts, including univariate and multivariate data analysis, time series analysis, and prediction - Provides risk management guidance through volatility prediction, quantiles, and value-at-risk - Examines portfolio theory, performance measurement, Markowitz portfolios, dynamic portfolio selection, and more - Discusses fundamental theorems of asset pricing, Black-Scholes pricing and hedging, quadratic pricing and hedging, option portfolios, interest rate derivatives, and other asset pricing principles - Provides supplementary R code and numerous graphics to reinforce complex content Nonparametric function estimation has received little attention in the context of risk management and option pricing, despite its useful applications and benefits. This book provides the essential background and practical knowledge needed to take full advantage of these little-used methods, and turn them into real-world advantage. Jussi KlemelA, PhD, is Adjunct Professor at the University of Oulu. His research interests include nonparametric function estimation, density estimation, and data visualization. He is the author of Smoothing of Multivariate Data: Density Estimation and Visualization and Multivariate Nonparametric Regression and Visualization: With R and Applications to Finance. Finance Statistical methods Finance Mathematical models Finances ; Méthodes statistiques Finances ; Modèles mathématiques BUSINESS & ECONOMICS ; Finance Finance ; Mathematical models Finance ; Statistical methods 9781119409106 Erscheint auch als Druck-Ausgabe 9781119409106 |
spellingShingle | Klemelä, Jussi 1965- Nonparametric finance Finance Statistical methods Finance Mathematical models Finances ; Méthodes statistiques Finances ; Modèles mathématiques BUSINESS & ECONOMICS ; Finance Finance ; Mathematical models Finance ; Statistical methods |
title | Nonparametric finance |
title_auth | Nonparametric finance |
title_exact_search | Nonparametric finance |
title_full | Nonparametric finance by Jussi Sakari Klemelä |
title_fullStr | Nonparametric finance by Jussi Sakari Klemelä |
title_full_unstemmed | Nonparametric finance by Jussi Sakari Klemelä |
title_short | Nonparametric finance |
title_sort | nonparametric finance |
topic | Finance Statistical methods Finance Mathematical models Finances ; Méthodes statistiques Finances ; Modèles mathématiques BUSINESS & ECONOMICS ; Finance Finance ; Mathematical models Finance ; Statistical methods |
topic_facet | Finance Statistical methods Finance Mathematical models Finances ; Méthodes statistiques Finances ; Modèles mathématiques BUSINESS & ECONOMICS ; Finance Finance ; Mathematical models Finance ; Statistical methods |
work_keys_str_mv | AT klemelajussi nonparametricfinance |