Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken, New Jersey
John Wiley and Sons, Inc.
[2015]
|
Schriftenreihe: | For dummies
|
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9781118841525/?ar |
Zusammenfassung: | This is the perfect starting point for IT professionals and students interested in making sense of their organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data. This book provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis; details different data visualization techniques that can be used to showcase and summarize your data; explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques; includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark. -- |
Beschreibung: | Vendor-supplied metadata |
Umfang: | 1 Online-Ressource |
ISBN: | 9781118841457 111884145X 9781118841525 1118841522 1118841557 9781118841556 |
Internformat
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047544635 | ||
003 | DE-627-1 | ||
005 | 20240228115805.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2015 xx |||||o 00| ||eng c | ||
020 | |a 9781118841457 |c electronic bk. |9 978-1-118-84145-7 | ||
020 | |a 111884145X |c electronic bk. |9 1-118-84145-X | ||
020 | |a 9781118841525 |c electronic bk. |9 978-1-118-84152-5 | ||
020 | |a 1118841522 |c electronic bk. |9 1-118-84152-2 | ||
020 | |a 1118841557 |9 1-118-84155-7 | ||
020 | |a 9781118841556 |9 978-1-118-84155-6 | ||
035 | |a (DE-627-1)047544635 | ||
035 | |a (DE-599)KEP047544635 | ||
035 | |a (ORHE)9781118841525 | ||
035 | |a (DE-627-1)047544635 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
072 | 7 | |a REF |2 bisacsh | |
082 | 0 | |a 001 |2 23 | |
100 | 1 | |a Pierson, Lillian |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data science for dummies |c by Lillian Pierson ; foreword by Jake Porway |
264 | 1 | |a Hoboken, New Jersey |b John Wiley and Sons, Inc. |c [2015] | |
264 | 4 | |c ©2015 | |
300 | |a 1 Online-Ressource | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
490 | 0 | |a For dummies | |
500 | |a Vendor-supplied metadata | ||
520 | |a This is the perfect starting point for IT professionals and students interested in making sense of their organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data. This book provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis; details different data visualization techniques that can be used to showcase and summarize your data; explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques; includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark. -- | ||
650 | 0 | |a Information technology | |
650 | 0 | |a Information retrieval | |
650 | 0 | |a Databases | |
650 | 0 | |a Data mining | |
650 | 2 | |a Information Storage and Retrieval | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Technologie de l'information | |
650 | 4 | |a Recherche de l'information | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a information technology | |
650 | 4 | |a information retrieval | |
650 | 4 | |a REFERENCE ; Questions & Answers | |
650 | 4 | |a Data mining | |
650 | 4 | |a Databases | |
650 | 4 | |a Information retrieval | |
650 | 4 | |a Information technology | |
776 | 1 | |z 9781118841556 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781118841556 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9781118841525/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-047544635 |
---|---|
_version_ | 1835903198204788736 |
adam_text | |
any_adam_object | |
author | Pierson, Lillian |
author_facet | Pierson, Lillian |
author_role | aut |
author_sort | Pierson, Lillian |
author_variant | l p lp |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047544635 (DE-599)KEP047544635 (ORHE)9781118841525 |
dewey-full | 001 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001 |
dewey-search | 001 |
dewey-sort | 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03108cam a22006492c 4500</leader><controlfield tag="001">ZDB-30-ORH-047544635</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115805.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118841457</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-118-84145-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111884145X</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-118-84145-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118841525</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-118-84152-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118841522</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-118-84152-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118841557</subfield><subfield code="9">1-118-84155-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118841556</subfield><subfield code="9">978-1-118-84155-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047544635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047544635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9781118841525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047544635</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">REF</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pierson, Lillian</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data science for dummies</subfield><subfield code="c">by Lillian Pierson ; foreword by Jake Porway</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">John Wiley and Sons, Inc.</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">For dummies</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Vendor-supplied metadata</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the perfect starting point for IT professionals and students interested in making sense of their organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data. This book provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis; details different data visualization techniques that can be used to showcase and summarize your data; explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques; includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark. --</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information technology</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Information Storage and Retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technologie de l'information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recherche de l'information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">REFERENCE ; Questions & Answers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Databases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information retrieval</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information technology</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9781118841556</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781118841556</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9781118841525/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047544635 |
illustrated | Not Illustrated |
indexdate | 2025-06-25T12:15:27Z |
institution | BVB |
isbn | 9781118841457 111884145X 9781118841525 1118841522 1118841557 9781118841556 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | John Wiley and Sons, Inc. |
record_format | marc |
series2 | For dummies |
spelling | Pierson, Lillian VerfasserIn aut Data science for dummies by Lillian Pierson ; foreword by Jake Porway Hoboken, New Jersey John Wiley and Sons, Inc. [2015] ©2015 1 Online-Ressource Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier For dummies Vendor-supplied metadata This is the perfect starting point for IT professionals and students interested in making sense of their organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data. This book provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis; details different data visualization techniques that can be used to showcase and summarize your data; explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques; includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark. -- Information technology Information retrieval Databases Data mining Information Storage and Retrieval Data Mining Technologie de l'information Recherche de l'information Exploration de données (Informatique) information technology information retrieval REFERENCE ; Questions & Answers 9781118841556 Erscheint auch als Druck-Ausgabe 9781118841556 |
spellingShingle | Pierson, Lillian Data science for dummies Information technology Information retrieval Databases Data mining Information Storage and Retrieval Data Mining Technologie de l'information Recherche de l'information Exploration de données (Informatique) information technology information retrieval REFERENCE ; Questions & Answers |
title | Data science for dummies |
title_auth | Data science for dummies |
title_exact_search | Data science for dummies |
title_full | Data science for dummies by Lillian Pierson ; foreword by Jake Porway |
title_fullStr | Data science for dummies by Lillian Pierson ; foreword by Jake Porway |
title_full_unstemmed | Data science for dummies by Lillian Pierson ; foreword by Jake Porway |
title_short | Data science for dummies |
title_sort | data science for dummies |
topic | Information technology Information retrieval Databases Data mining Information Storage and Retrieval Data Mining Technologie de l'information Recherche de l'information Exploration de données (Informatique) information technology information retrieval REFERENCE ; Questions & Answers |
topic_facet | Information technology Information retrieval Databases Data mining Information Storage and Retrieval Data Mining Technologie de l'information Recherche de l'information Exploration de données (Informatique) information technology information retrieval REFERENCE ; Questions & Answers |
work_keys_str_mv | AT piersonlillian datasciencefordummies |