Modeling techniques in predictive analytics: business problems and solutions with R
Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're alre...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Upper Saddle River, NJ
Pearson Education
2014, ©2015
|
Ausgabe: | Rev. and expanded ed. |
Schlagwörter: | |
Links: | https://learning.oreilly.com/library/view/-/9780133886214/?ar |
Zusammenfassung: | Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're already a modeler, programmer, or manager, it will teach you crucial skills you don't yet have. This guide illuminates the discipline through realistic vignettes and intuitive data visualizations-not complex math. Thomas W. Miller, leader of Northwestern University's pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today's key applications for predictive analytics, delivering skills and knowledge to put models to work-and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. |
Beschreibung: | Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed October 24, 2014) |
Umfang: | 1 Online-Ressource (1 volume) illustrations |
ISBN: | 9780133886214 0133886212 |
Internformat
MARC
LEADER | 00000cam a22000002 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-04743919X | ||
003 | DE-627-1 | ||
005 | 20240228115701.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2014 xx |||||o 00| ||eng c | ||
020 | |a 9780133886214 |9 978-0-13-388621-4 | ||
020 | |a 0133886212 |9 0-13-388621-2 | ||
035 | |a (DE-627-1)04743919X | ||
035 | |a (DE-599)KEP04743919X | ||
035 | |a (ORHE)9780133886214 | ||
035 | |a (DE-627-1)04743919X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 658.40352 |2 23/eng/20230216 | |
100 | 1 | |a Miller, Thomas W. |d 1946- |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Modeling techniques in predictive analytics |b business problems and solutions with R |c Thomas W. Miller |
246 | 3 | 3 | |a Business problems and solutions with R |
250 | |a Rev. and expanded ed. | ||
264 | 1 | |a Upper Saddle River, NJ |b Pearson Education |c 2014, ©2015 | |
300 | |a 1 Online-Ressource (1 volume) |b illustrations | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed October 24, 2014) | ||
520 | |a Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're already a modeler, programmer, or manager, it will teach you crucial skills you don't yet have. This guide illuminates the discipline through realistic vignettes and intuitive data visualizations-not complex math. Thomas W. Miller, leader of Northwestern University's pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today's key applications for predictive analytics, delivering skills and knowledge to put models to work-and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. | ||
650 | 0 | |a Decision making |x Statistical methods | |
650 | 0 | |a Forecasting |x Mathematical models | |
650 | 0 | |a Business planning | |
650 | 0 | |a Data mining | |
650 | 2 | |a Data Mining | |
650 | 4 | |a Prise de décision ; Méthodes statistiques | |
650 | 4 | |a Exploration de données (Informatique) | |
650 | 4 | |a Business planning | |
650 | 4 | |a Data mining | |
650 | 4 | |a Decision making ; Statistical methods | |
650 | 4 | |a Forecasting ; Mathematical models | |
776 | 1 | |z 9780133886016 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780133886016 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780133886214/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-30-ORH-04743919X |
---|---|
_version_ | 1821494904278220800 |
adam_text | |
any_adam_object | |
author | Miller, Thomas W. 1946- |
author_facet | Miller, Thomas W. 1946- |
author_role | aut |
author_sort | Miller, Thomas W. 1946- |
author_variant | t w m tw twm |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)04743919X (DE-599)KEP04743919X (ORHE)9780133886214 |
dewey-full | 658.40352 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.40352 |
dewey-search | 658.40352 |
dewey-sort | 3658.40352 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
edition | Rev. and expanded ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03134cam a22005292 4500</leader><controlfield tag="001">ZDB-30-ORH-04743919X</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115701.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780133886214</subfield><subfield code="9">978-0-13-388621-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0133886212</subfield><subfield code="9">0-13-388621-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04743919X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP04743919X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780133886214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)04743919X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.40352</subfield><subfield code="2">23/eng/20230216</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miller, Thomas W.</subfield><subfield code="d">1946-</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling techniques in predictive analytics</subfield><subfield code="b">business problems and solutions with R</subfield><subfield code="c">Thomas W. Miller</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Business problems and solutions with R</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Rev. and expanded ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Upper Saddle River, NJ</subfield><subfield code="b">Pearson Education</subfield><subfield code="c">2014, ©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed October 24, 2014)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're already a modeler, programmer, or manager, it will teach you crucial skills you don't yet have. This guide illuminates the discipline through realistic vignettes and intuitive data visualizations-not complex math. Thomas W. Miller, leader of Northwestern University's pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today's key applications for predictive analytics, delivering skills and knowledge to put models to work-and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Decision making</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forecasting</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Business planning</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prise de décision ; Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exploration de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business planning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making ; Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting ; Mathematical models</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780133886016</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780133886016</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780133886214/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-04743919X |
illustrated | Illustrated |
indexdate | 2025-01-17T11:21:47Z |
institution | BVB |
isbn | 9780133886214 0133886212 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) illustrations |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Pearson Education |
record_format | marc |
spelling | Miller, Thomas W. 1946- VerfasserIn aut Modeling techniques in predictive analytics business problems and solutions with R Thomas W. Miller Business problems and solutions with R Rev. and expanded ed. Upper Saddle River, NJ Pearson Education 2014, ©2015 1 Online-Ressource (1 volume) illustrations Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes bibliographical references and index. - Online resource; title from title page (Safari, viewed October 24, 2014) Now fully updated, this uniquely accessible book will help you use predictive analytics to solve real business problems and drive real competitive advantage. If you're new to the discipline, it will give you the strong foundation you need to get accurate, actionable results. If you're already a modeler, programmer, or manager, it will teach you crucial skills you don't yet have. This guide illuminates the discipline through realistic vignettes and intuitive data visualizations-not complex math. Thomas W. Miller, leader of Northwestern University's pioneering program in predictive analytics, guides you through defining problems, identifying data, crafting and optimizing models, writing effective R code, interpreting results, and more. Every chapter focuses on one of today's key applications for predictive analytics, delivering skills and knowledge to put models to work-and maximize their value. Reflecting extensive student and instructor feedback, this edition adds five classroom-tested case studies, updates all code for new versions of R, explains code behavior more clearly and completely, and covers modern data science methods even more effectively. Decision making Statistical methods Forecasting Mathematical models Business planning Data mining Data Mining Prise de décision ; Méthodes statistiques Exploration de données (Informatique) Decision making ; Statistical methods Forecasting ; Mathematical models 9780133886016 Erscheint auch als Druck-Ausgabe 9780133886016 |
spellingShingle | Miller, Thomas W. 1946- Modeling techniques in predictive analytics business problems and solutions with R Decision making Statistical methods Forecasting Mathematical models Business planning Data mining Data Mining Prise de décision ; Méthodes statistiques Exploration de données (Informatique) Decision making ; Statistical methods Forecasting ; Mathematical models |
title | Modeling techniques in predictive analytics business problems and solutions with R |
title_alt | Business problems and solutions with R |
title_auth | Modeling techniques in predictive analytics business problems and solutions with R |
title_exact_search | Modeling techniques in predictive analytics business problems and solutions with R |
title_full | Modeling techniques in predictive analytics business problems and solutions with R Thomas W. Miller |
title_fullStr | Modeling techniques in predictive analytics business problems and solutions with R Thomas W. Miller |
title_full_unstemmed | Modeling techniques in predictive analytics business problems and solutions with R Thomas W. Miller |
title_short | Modeling techniques in predictive analytics |
title_sort | modeling techniques in predictive analytics business problems and solutions with r |
title_sub | business problems and solutions with R |
topic | Decision making Statistical methods Forecasting Mathematical models Business planning Data mining Data Mining Prise de décision ; Méthodes statistiques Exploration de données (Informatique) Decision making ; Statistical methods Forecasting ; Mathematical models |
topic_facet | Decision making Statistical methods Forecasting Mathematical models Business planning Data mining Data Mining Prise de décision ; Méthodes statistiques Exploration de données (Informatique) Decision making ; Statistical methods Forecasting ; Mathematical models |
work_keys_str_mv | AT millerthomasw modelingtechniquesinpredictiveanalyticsbusinessproblemsandsolutionswithr AT millerthomasw businessproblemsandsolutionswithr |