Data architecture: a primer for the data scientist : big data, data warehouse and data vault
Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems)....
Saved in:
Main Authors: | , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Waltham, MA
Morgan Kaufmann
[2015]
|
Subjects: | |
Links: | https://learning.oreilly.com/library/view/-/9780128020449/?ar |
Summary: | Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or a. |
Item Description: | Includes index. - Online resource; title from title page (Safari, viewed January 7, 2015) |
Physical Description: | 1 Online-Ressource (1 volume) Illustrationen |
ISBN: | 9780128020913 0128020911 012802044X 9780128020449 |
Staff View
MARC
LEADER | 00000cam a22000002c 4500 | ||
---|---|---|---|
001 | ZDB-30-ORH-047406836 | ||
003 | DE-627-1 | ||
005 | 20240228115738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2015 xx |||||o 00| ||eng c | ||
020 | |a 9780128020913 |9 978-0-12-802091-3 | ||
020 | |a 0128020911 |9 0-12-802091-1 | ||
020 | |a 012802044X |9 0-12-802044-X | ||
020 | |a 9780128020449 |9 978-0-12-802044-9 | ||
020 | |a 9780128020449 |9 978-0-12-802044-9 | ||
035 | |a (DE-627-1)047406836 | ||
035 | |a (DE-599)KEP047406836 | ||
035 | |a (ORHE)9780128020449 | ||
035 | |a (DE-627-1)047406836 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 005.756 | |
100 | 1 | |a Inmon, William H. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Data architecture |b a primer for the data scientist : big data, data warehouse and data vault |c W.H. Inmon, Daniel Linstedt |
246 | 3 | 3 | |a Primer for the data scientist : big data, data warehouse and data vault |
264 | 1 | |a Waltham, MA |b Morgan Kaufmann |c [2015] | |
264 | 4 | |c ©2015 | |
300 | |a 1 Online-Ressource (1 volume) |b Illustrationen | ||
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a Includes index. - Online resource; title from title page (Safari, viewed January 7, 2015) | ||
520 | |a Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or a. | ||
546 | |a English. | ||
650 | 0 | |a Data warehousing | |
650 | 0 | |a Big data | |
650 | 4 | |a Entrepôts de données (Informatique) | |
650 | 4 | |a Données volumineuses | |
650 | 4 | |a Big data | |
650 | 4 | |a Data warehousing | |
700 | 1 | |a Lindstedt, Daniel |e VerfasserIn |4 aut | |
776 | 1 | |z 9780128020449 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780128020449 |
966 | 4 | 0 | |l DE-91 |p ZDB-30-ORH |q TUM_PDA_ORH |u https://learning.oreilly.com/library/view/-/9780128020449/?ar |m X:ORHE |x Aggregator |z lizenzpflichtig |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-ORH | ||
951 | |a BO | ||
912 | |a ZDB-30-ORH | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-30-ORH-047406836 |
---|---|
_version_ | 1831287122906054657 |
adam_text | |
any_adam_object | |
author | Inmon, William H. Lindstedt, Daniel |
author_facet | Inmon, William H. Lindstedt, Daniel |
author_role | aut aut |
author_sort | Inmon, William H. |
author_variant | w h i wh whi d l dl |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-30-ORH |
ctrlnum | (DE-627-1)047406836 (DE-599)KEP047406836 (ORHE)9780128020449 |
dewey-full | 005.756 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.756 |
dewey-search | 005.756 |
dewey-sort | 15.756 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02480cam a22005292c 4500</leader><controlfield tag="001">ZDB-30-ORH-047406836</controlfield><controlfield tag="003">DE-627-1</controlfield><controlfield tag="005">20240228115738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128020913</subfield><subfield code="9">978-0-12-802091-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0128020911</subfield><subfield code="9">0-12-802091-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">012802044X</subfield><subfield code="9">0-12-802044-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128020449</subfield><subfield code="9">978-0-12-802044-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780128020449</subfield><subfield code="9">978-0-12-802044-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047406836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP047406836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ORHE)9780128020449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627-1)047406836</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.756</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Inmon, William H.</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data architecture</subfield><subfield code="b">a primer for the data scientist : big data, data warehouse and data vault</subfield><subfield code="c">W.H. Inmon, Daniel Linstedt</subfield></datafield><datafield tag="246" ind1="3" ind2="3"><subfield code="a">Primer for the data scientist : big data, data warehouse and data vault</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Waltham, MA</subfield><subfield code="b">Morgan Kaufmann</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 volume)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index. - Online resource; title from title page (Safari, viewed January 7, 2015)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or a.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Data warehousing</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entrepôts de données (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Données volumineuses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data warehousing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lindstedt, Daniel</subfield><subfield code="e">VerfasserIn</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="1" ind2=" "><subfield code="z">9780128020449</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780128020449</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-30-ORH</subfield><subfield code="q">TUM_PDA_ORH</subfield><subfield code="u">https://learning.oreilly.com/library/view/-/9780128020449/?ar</subfield><subfield code="m">X:ORHE</subfield><subfield code="x">Aggregator</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">BO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-30-ORH-047406836 |
illustrated | Not Illustrated |
indexdate | 2025-05-05T13:24:55Z |
institution | BVB |
isbn | 9780128020913 0128020911 012802044X 9780128020449 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (1 volume) Illustrationen |
psigel | ZDB-30-ORH TUM_PDA_ORH ZDB-30-ORH |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Morgan Kaufmann |
record_format | marc |
spelling | Inmon, William H. VerfasserIn aut Data architecture a primer for the data scientist : big data, data warehouse and data vault W.H. Inmon, Daniel Linstedt Primer for the data scientist : big data, data warehouse and data vault Waltham, MA Morgan Kaufmann [2015] ©2015 1 Online-Ressource (1 volume) Illustrationen Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Includes index. - Online resource; title from title page (Safari, viewed January 7, 2015) Today, the world is trying to create and educate data scientists because of the phenomenon of Big Data. And everyone is looking deeply into this technology. But no one is looking at the larger architectural picture of how Big Data needs to fit within the existing systems (data warehousing systems). Taking a look at the larger picture into which Big Data fits gives the data scientist the necessary context for how pieces of the puzzle should fit together. Most references on Big Data look at only one tiny part of a much larger whole. Until data gathered can be put into an existing framework or a. English. Data warehousing Big data Entrepôts de données (Informatique) Données volumineuses Lindstedt, Daniel VerfasserIn aut 9780128020449 Erscheint auch als Druck-Ausgabe 9780128020449 |
spellingShingle | Inmon, William H. Lindstedt, Daniel Data architecture a primer for the data scientist : big data, data warehouse and data vault Data warehousing Big data Entrepôts de données (Informatique) Données volumineuses |
title | Data architecture a primer for the data scientist : big data, data warehouse and data vault |
title_alt | Primer for the data scientist : big data, data warehouse and data vault |
title_auth | Data architecture a primer for the data scientist : big data, data warehouse and data vault |
title_exact_search | Data architecture a primer for the data scientist : big data, data warehouse and data vault |
title_full | Data architecture a primer for the data scientist : big data, data warehouse and data vault W.H. Inmon, Daniel Linstedt |
title_fullStr | Data architecture a primer for the data scientist : big data, data warehouse and data vault W.H. Inmon, Daniel Linstedt |
title_full_unstemmed | Data architecture a primer for the data scientist : big data, data warehouse and data vault W.H. Inmon, Daniel Linstedt |
title_short | Data architecture |
title_sort | data architecture a primer for the data scientist big data data warehouse and data vault |
title_sub | a primer for the data scientist : big data, data warehouse and data vault |
topic | Data warehousing Big data Entrepôts de données (Informatique) Données volumineuses |
topic_facet | Data warehousing Big data Entrepôts de données (Informatique) Données volumineuses |
work_keys_str_mv | AT inmonwilliamh dataarchitectureaprimerforthedatascientistbigdatadatawarehouseanddatavault AT lindstedtdaniel dataarchitectureaprimerforthedatascientistbigdatadatawarehouseanddatavault AT inmonwilliamh primerforthedatascientistbigdatadatawarehouseanddatavault AT lindstedtdaniel primerforthedatascientistbigdatadatawarehouseanddatavault |