Learning kernel classifiers: theory and algorithms
Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, Mass.
MIT Press
©2002
|
Schriftenreihe: | Adaptive computation and machine learning
|
Links: | https://doi.org/10.7551/mitpress/4170.001.0001?locatt=mode:legacy |
Zusammenfassung: | Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library. |
Umfang: | 1 Online-Ressource (xx, 364 Seiten) Illustrationen |
ISBN: | 026208306X 0262256339 0585436681 9780262083065 9780262256339 9780585436685 |
Internformat
MARC
LEADER | 00000cam a2200000Ia 4500 | ||
---|---|---|---|
001 | ZDB-260-MPOB-4170 | ||
003 | MaCbMITP | ||
005 | 20190503073319.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 030408s2002 maua ob 001 0 eng d | ||
020 | |a 026208306X | ||
020 | |a 0262256339 | ||
020 | |a 0585436681 | ||
020 | |a 9780262083065 | ||
020 | |a 9780262256339 | ||
020 | |a 9780585436685 | ||
100 | 1 | |a Herbrich, Ralf | |
245 | 1 | 0 | |a Learning kernel classifiers |b theory and algorithms |c Ralf Herbrich |
264 | 1 | |a Cambridge, Mass. |b MIT Press |c ©2002 | |
300 | |a 1 Online-Ressource (xx, 364 Seiten) |b Illustrationen | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a Adaptive computation and machine learning | |
520 | |a Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library. | ||
966 | 4 | 0 | |l DE-91 |p ZDB-260-MPOB |q TUM_PDA_MPOB |3 MIT Press |u https://doi.org/10.7551/mitpress/4170.001.0001?locatt=mode:legacy |3 Volltext |
912 | |a ZDB-260-MPOB | ||
912 | |a ZDB-260-MPOB | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-260-MPOB-4170 |
---|---|
_version_ | 1821493840046981120 |
adam_text | |
any_adam_object | |
author | Herbrich, Ralf |
author_facet | Herbrich, Ralf |
author_role | |
author_sort | Herbrich, Ralf |
author_variant | r h rh |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-260-MPOB |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02016cam a2200301Ia 4500</leader><controlfield tag="001">ZDB-260-MPOB-4170</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073319.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">030408s2002 maua ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">026208306X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262256339</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585436681</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262083065</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262256339</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585436685</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herbrich, Ralf</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning kernel classifiers</subfield><subfield code="b">theory and algorithms</subfield><subfield code="c">Ralf Herbrich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">©2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 364 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Adaptive computation and machine learning</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/4170.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-260-MPOB-4170 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:04:52Z |
institution | BVB |
isbn | 026208306X 0262256339 0585436681 9780262083065 9780262256339 9780585436685 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xx, 364 Seiten) Illustrationen |
psigel | ZDB-260-MPOB TUM_PDA_MPOB ZDB-260-MPOB |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | MIT Press |
record_format | marc |
series2 | Adaptive computation and machine learning |
spelling | Herbrich, Ralf Learning kernel classifiers theory and algorithms Ralf Herbrich Cambridge, Mass. MIT Press ©2002 1 Online-Ressource (xx, 364 Seiten) Illustrationen txt c cr Adaptive computation and machine learning Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library. |
spellingShingle | Herbrich, Ralf Learning kernel classifiers theory and algorithms |
title | Learning kernel classifiers theory and algorithms |
title_auth | Learning kernel classifiers theory and algorithms |
title_exact_search | Learning kernel classifiers theory and algorithms |
title_full | Learning kernel classifiers theory and algorithms Ralf Herbrich |
title_fullStr | Learning kernel classifiers theory and algorithms Ralf Herbrich |
title_full_unstemmed | Learning kernel classifiers theory and algorithms Ralf Herbrich |
title_short | Learning kernel classifiers |
title_sort | learning kernel classifiers theory and algorithms |
title_sub | theory and algorithms |
work_keys_str_mv | AT herbrichralf learningkernelclassifierstheoryandalgorithms |