Knowledge-based neurocomputing:
Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power...
Gespeichert in:
Weitere beteiligte Personen: | , |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge, Massachusetts
The MIT Press
[1999]
|
Links: | https://doi.org/10.7551/mitpress/4070.001.0001?locatt=mode:legacy |
Zusammenfassung: | Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada |
Umfang: | 1 Online-Ressource (xiv, 486 Seiten) Illustrationen |
ISBN: | 0262270498 9780262270496 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-260-MPOB-4070 | ||
003 | MaCbMITP | ||
005 | 20190503073438.0 | ||
006 | m o d | ||
007 | cr cnu|||uuu|| | ||
008 | 990727s1999 maua ob 001 0 eng d | ||
020 | |a 0262270498 | ||
020 | |a 9780262270496 | ||
245 | 0 | 0 | |a Knowledge-based neurocomputing |c edited by Ian Cloete and J.M. Zurada |
264 | 1 | |a Cambridge, Massachusetts |b The MIT Press |c [1999] | |
264 | 4 | |c ©1999 | |
300 | |a 1 Online-Ressource (xiv, 486 Seiten) |b Illustrationen | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada | ||
700 | 1 | |a Cloete, Ian | |
700 | 1 | |a Zurada, Jacek M. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 0262032740 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780262032742 |
966 | 4 | 0 | |l DE-91 |p ZDB-260-MPOB |q TUM_PDA_MPOB |3 MIT Press |u https://doi.org/10.7551/mitpress/4070.001.0001?locatt=mode:legacy |3 Volltext |
912 | |a ZDB-260-MPOB | ||
912 | |a ZDB-260-MPOB | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-260-MPOB-4070 |
---|---|
_version_ | 1821493840040689664 |
adam_text | |
any_adam_object | |
author2 | Cloete, Ian Zurada, Jacek M. |
author2_role | |
author2_variant | i c ic j m z jm jmz |
author_facet | Cloete, Ian Zurada, Jacek M. |
author_sort | Cloete, Ian |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-260-MPOB |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02444cam a2200289Mi 4500</leader><controlfield tag="001">ZDB-260-MPOB-4070</controlfield><controlfield tag="003">MaCbMITP</controlfield><controlfield tag="005">20190503073438.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu|||uuu||</controlfield><controlfield tag="008">990727s1999 maua ob 001 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262270498</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262270496</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Knowledge-based neurocomputing</subfield><subfield code="c">edited by Ian Cloete and J.M. Zurada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Massachusetts</subfield><subfield code="b">The MIT Press</subfield><subfield code="c">[1999]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 486 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cloete, Ian</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zurada, Jacek M.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">0262032740</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780262032742</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-260-MPOB</subfield><subfield code="q">TUM_PDA_MPOB</subfield><subfield code="3">MIT Press</subfield><subfield code="u">https://doi.org/10.7551/mitpress/4070.001.0001?locatt=mode:legacy</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-260-MPOB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-260-MPOB-4070 |
illustrated | Illustrated |
indexdate | 2025-01-17T11:04:52Z |
institution | BVB |
isbn | 0262270498 9780262270496 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xiv, 486 Seiten) Illustrationen |
psigel | ZDB-260-MPOB TUM_PDA_MPOB ZDB-260-MPOB |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | The MIT Press |
record_format | marc |
spelling | Knowledge-based neurocomputing edited by Ian Cloete and J.M. Zurada Cambridge, Massachusetts The MIT Press [1999] ©1999 1 Online-Ressource (xiv, 486 Seiten) Illustrationen txt c cr Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada Cloete, Ian Zurada, Jacek M. Erscheint auch als Druck-Ausgabe 0262032740 Erscheint auch als Druck-Ausgabe 9780262032742 |
spellingShingle | Knowledge-based neurocomputing |
title | Knowledge-based neurocomputing |
title_auth | Knowledge-based neurocomputing |
title_exact_search | Knowledge-based neurocomputing |
title_full | Knowledge-based neurocomputing edited by Ian Cloete and J.M. Zurada |
title_fullStr | Knowledge-based neurocomputing edited by Ian Cloete and J.M. Zurada |
title_full_unstemmed | Knowledge-based neurocomputing edited by Ian Cloete and J.M. Zurada |
title_short | Knowledge-based neurocomputing |
title_sort | knowledge based neurocomputing |
work_keys_str_mv | AT cloeteian knowledgebasedneurocomputing AT zuradajacekm knowledgebasedneurocomputing |