Sobolev spaces on metric measure spaces: an approach based on upper gradients
Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of m...
Saved in:
Main Author: | |
---|---|
Other Authors: | , , |
Format: | eBook |
Language: | English |
Published: |
Cambridge
Cambridge University Press
2015
|
Series: | New mathematical monographs
27 |
Links: | https://doi.org/10.1017/CBO9781316135914 |
Summary: | Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities. |
Physical Description: | 1 Online-Ressource (xii, 434 Seiten) |
ISBN: | 9781316135914 |
Staff View
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781316135914 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 140611s2015||||enk o ||1 0|eng|d | ||
020 | |a 9781316135914 | ||
100 | 1 | |a Heinonen, Juha | |
245 | 1 | 0 | |a Sobolev spaces on metric measure spaces |b an approach based on upper gradients |c Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2015 | |
300 | |a 1 Online-Ressource (xii, 434 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a New mathematical monographs |v 27 | |
520 | |a Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities. | ||
700 | 1 | |a Koskela, Pekka | |
700 | 1 | |a Shanmugalingam, Nageswari | |
700 | 1 | |a Tyson, Jeremy T. |d 1972- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107092341 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107465343 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781316135914 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Record in the Search Index
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781316135914 |
---|---|
_version_ | 1827038447425028097 |
adam_text | |
any_adam_object | |
author | Heinonen, Juha |
author2 | Koskela, Pekka Shanmugalingam, Nageswari Tyson, Jeremy T. 1972- |
author2_role | |
author2_variant | p k pk n s ns j t t jt jtt |
author_facet | Heinonen, Juha Koskela, Pekka Shanmugalingam, Nageswari Tyson, Jeremy T. 1972- |
author_role | |
author_sort | Heinonen, Juha |
author_variant | j h jh |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02045nam a2200301 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781316135914</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">140611s2015||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781316135914</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heinonen, Juha</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sobolev spaces on metric measure spaces</subfield><subfield code="b">an approach based on upper gradients</subfield><subfield code="c">Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 434 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">27</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koskela, Pekka</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shanmugalingam, Nageswari</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tyson, Jeremy T.</subfield><subfield code="d">1972-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107092341</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107465343</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781316135914</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781316135914 |
illustrated | Not Illustrated |
indexdate | 2025-03-19T15:54:02Z |
institution | BVB |
isbn | 9781316135914 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xii, 434 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Cambridge University Press |
record_format | marc |
series2 | New mathematical monographs |
spelling | Heinonen, Juha Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson Cambridge Cambridge University Press 2015 1 Online-Ressource (xii, 434 Seiten) txt c cr New mathematical monographs 27 Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov-Hausdorff convergence, and the Keith-Zhong self-improvement theorem for Poincaré inequalities. Koskela, Pekka Shanmugalingam, Nageswari Tyson, Jeremy T. 1972- Erscheint auch als Druck-Ausgabe 9781107092341 Erscheint auch als Druck-Ausgabe 9781107465343 |
spellingShingle | Heinonen, Juha Sobolev spaces on metric measure spaces an approach based on upper gradients |
title | Sobolev spaces on metric measure spaces an approach based on upper gradients |
title_auth | Sobolev spaces on metric measure spaces an approach based on upper gradients |
title_exact_search | Sobolev spaces on metric measure spaces an approach based on upper gradients |
title_full | Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
title_fullStr | Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
title_full_unstemmed | Sobolev spaces on metric measure spaces an approach based on upper gradients Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson |
title_short | Sobolev spaces on metric measure spaces |
title_sort | sobolev spaces on metric measure spaces an approach based on upper gradients |
title_sub | an approach based on upper gradients |
work_keys_str_mv | AT heinonenjuha sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT koskelapekka sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT shanmugalingamnageswari sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients AT tysonjeremyt sobolevspacesonmetricmeasurespacesanapproachbasedonuppergradients |