Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2012
|
Schriftenreihe: | London Mathematical Society lecture note series
401 |
Links: | https://doi.org/10.1017/CBO9781139226660 |
Zusammenfassung: | The theory of Schur-Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur-Weyl theory. To begin, various algebraic structures are discussed, including double Ringel-Hall algebras of cyclic quivers and their quantum loop algebra interpretation. The rest of the book investigates the affine quantum Schur-Weyl duality on three levels. This includes the affine quantum Schur-Weyl reciprocity, the bridging role of affine q-Schur algebras between representations of the quantum loop algebras and those of the corresponding affine Hecke algebras, presentation of affine quantum Schur algebras and the realisation conjecture for the double Ringel-Hall algebra with a proof of the classical case. This text is ideal for researchers in algebra and graduate students who want to master Ringel-Hall algebras and Schur-Weyl duality. |
Umfang: | 1 Online-Ressource (viii, 207 Seiten) |
ISBN: | 9781139226660 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781139226660 | ||
003 | UkCbUP | ||
005 | 20151005020623.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 120109s2012||||enk o ||1 0|eng|d | ||
020 | |a 9781139226660 | ||
100 | 1 | |a Deng, Bangming | |
245 | 1 | 2 | |a A double Hall algebra approach to affine quantum Schur-Weyl theory |c Bangming Deng, Jie Du, Qiang Fu |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2012 | |
300 | |a 1 Online-Ressource (viii, 207 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
490 | 1 | |a London Mathematical Society lecture note series |v 401 | |
520 | |a The theory of Schur-Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur-Weyl theory. To begin, various algebraic structures are discussed, including double Ringel-Hall algebras of cyclic quivers and their quantum loop algebra interpretation. The rest of the book investigates the affine quantum Schur-Weyl duality on three levels. This includes the affine quantum Schur-Weyl reciprocity, the bridging role of affine q-Schur algebras between representations of the quantum loop algebras and those of the corresponding affine Hecke algebras, presentation of affine quantum Schur algebras and the realisation conjecture for the double Ringel-Hall algebra with a proof of the classical case. This text is ideal for researchers in algebra and graduate students who want to master Ringel-Hall algebras and Schur-Weyl duality. | ||
700 | 1 | |a Du, Jie | |
700 | 1 | |a Fu, Qiang | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781107608603 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/CBO9781139226660 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781139226660 |
---|---|
_version_ | 1832177781834776576 |
adam_text | |
any_adam_object | |
author | Deng, Bangming |
author2 | Du, Jie Fu, Qiang |
author2_role | |
author2_variant | j d jd q f qf |
author_facet | Deng, Bangming Du, Jie Fu, Qiang |
author_role | |
author_sort | Deng, Bangming |
author_variant | b d bd |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01862nam a2200277 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781139226660</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20151005020623.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">120109s2012||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139226660</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deng, Bangming</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A double Hall algebra approach to affine quantum Schur-Weyl theory</subfield><subfield code="c">Bangming Deng, Jie Du, Qiang Fu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 207 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">401</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Schur-Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur-Weyl theory. To begin, various algebraic structures are discussed, including double Ringel-Hall algebras of cyclic quivers and their quantum loop algebra interpretation. The rest of the book investigates the affine quantum Schur-Weyl duality on three levels. This includes the affine quantum Schur-Weyl reciprocity, the bridging role of affine q-Schur algebras between representations of the quantum loop algebras and those of the corresponding affine Hecke algebras, presentation of affine quantum Schur algebras and the realisation conjecture for the double Ringel-Hall algebra with a proof of the classical case. This text is ideal for researchers in algebra and graduate students who want to master Ringel-Hall algebras and Schur-Weyl duality.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Jie</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fu, Qiang</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781107608603</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/CBO9781139226660</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781139226660 |
illustrated | Not Illustrated |
indexdate | 2025-05-15T09:21:33Z |
institution | BVB |
isbn | 9781139226660 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (viii, 207 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series |
spelling | Deng, Bangming A double Hall algebra approach to affine quantum Schur-Weyl theory Bangming Deng, Jie Du, Qiang Fu Cambridge Cambridge University Press 2012 1 Online-Ressource (viii, 207 Seiten) txt c cr London Mathematical Society lecture note series 401 The theory of Schur-Weyl duality has had a profound influence over many areas of algebra and combinatorics. This text is original in two respects: it discusses affine q-Schur algebras and presents an algebraic, as opposed to geometric, approach to affine quantum Schur-Weyl theory. To begin, various algebraic structures are discussed, including double Ringel-Hall algebras of cyclic quivers and their quantum loop algebra interpretation. The rest of the book investigates the affine quantum Schur-Weyl duality on three levels. This includes the affine quantum Schur-Weyl reciprocity, the bridging role of affine q-Schur algebras between representations of the quantum loop algebras and those of the corresponding affine Hecke algebras, presentation of affine quantum Schur algebras and the realisation conjecture for the double Ringel-Hall algebra with a proof of the classical case. This text is ideal for researchers in algebra and graduate students who want to master Ringel-Hall algebras and Schur-Weyl duality. Du, Jie Fu, Qiang Erscheint auch als Druck-Ausgabe 9781107608603 |
spellingShingle | Deng, Bangming A double Hall algebra approach to affine quantum Schur-Weyl theory |
title | A double Hall algebra approach to affine quantum Schur-Weyl theory |
title_auth | A double Hall algebra approach to affine quantum Schur-Weyl theory |
title_exact_search | A double Hall algebra approach to affine quantum Schur-Weyl theory |
title_full | A double Hall algebra approach to affine quantum Schur-Weyl theory Bangming Deng, Jie Du, Qiang Fu |
title_fullStr | A double Hall algebra approach to affine quantum Schur-Weyl theory Bangming Deng, Jie Du, Qiang Fu |
title_full_unstemmed | A double Hall algebra approach to affine quantum Schur-Weyl theory Bangming Deng, Jie Du, Qiang Fu |
title_short | A double Hall algebra approach to affine quantum Schur-Weyl theory |
title_sort | double hall algebra approach to affine quantum schur weyl theory |
work_keys_str_mv | AT dengbangming adoublehallalgebraapproachtoaffinequantumschurweyltheory AT dujie adoublehallalgebraapproachtoaffinequantumschurweyltheory AT fuqiang adoublehallalgebraapproachtoaffinequantumschurweyltheory AT dengbangming doublehallalgebraapproachtoaffinequantumschurweyltheory AT dujie doublehallalgebraapproachtoaffinequantumschurweyltheory AT fuqiang doublehallalgebraapproachtoaffinequantumschurweyltheory |