Machine learning fundamentals: a concise introduction
This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes wide...
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Links: | https://doi.org/10.1017/9781108938051 |
Zusammenfassung: | This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely "from scratch" based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts. |
Umfang: | 1 Online-Ressource (xviii, 380 Seiten) |
ISBN: | 9781108938051 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108938051 | ||
003 | UkCbUP | ||
005 | 20211202110600.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 200508s2021||||enk o ||1 0|eng|d | ||
020 | |a 9781108938051 | ||
100 | 1 | |a Jiang, Hui | |
245 | 1 | 0 | |a Machine learning fundamentals |b a concise introduction |c Hui Jiang, York University, Toronto |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (xviii, 380 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely "from scratch" based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts. | ||
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108837040 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108940023 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108938051 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108938051 |
---|---|
_version_ | 1825574054746128384 |
adam_text | |
any_adam_object | |
author | Jiang, Hui |
author_facet | Jiang, Hui |
author_role | |
author_sort | Jiang, Hui |
author_variant | h j hj |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01653nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108938051</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20211202110600.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">200508s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108938051</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Hui</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning fundamentals</subfield><subfield code="b">a concise introduction</subfield><subfield code="c">Hui Jiang, York University, Toronto</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 380 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely "from scratch" based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108837040</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108940023</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108938051</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108938051 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:08Z |
institution | BVB |
isbn | 9781108938051 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 380 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Jiang, Hui Machine learning fundamentals a concise introduction Hui Jiang, York University, Toronto Cambridge Cambridge University Press 2021 1 Online-Ressource (xviii, 380 Seiten) txt c cr This lucid, accessible introduction to supervised machine learning presents core concepts in a focused and logical way that is easy for beginners to follow. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning. Coverage includes widely used traditional methods such as SVMs, boosted trees, HMMs, and LDAs, plus popular deep learning methods such as convolution neural nets, attention, transformers, and GANs. Organized in a coherent presentation framework that emphasizes the big picture, the text introduces each method clearly and concisely "from scratch" based on the fundamentals. All methods and algorithms are described by a clean and consistent style, with a minimum of unnecessary detail. Numerous case studies and concrete examples demonstrate how the methods can be applied in a variety of contexts. Erscheint auch als Druck-Ausgabe 9781108837040 Erscheint auch als Druck-Ausgabe 9781108940023 |
spellingShingle | Jiang, Hui Machine learning fundamentals a concise introduction |
title | Machine learning fundamentals a concise introduction |
title_auth | Machine learning fundamentals a concise introduction |
title_exact_search | Machine learning fundamentals a concise introduction |
title_full | Machine learning fundamentals a concise introduction Hui Jiang, York University, Toronto |
title_fullStr | Machine learning fundamentals a concise introduction Hui Jiang, York University, Toronto |
title_full_unstemmed | Machine learning fundamentals a concise introduction Hui Jiang, York University, Toronto |
title_short | Machine learning fundamentals |
title_sort | machine learning fundamentals a concise introduction |
title_sub | a concise introduction |
work_keys_str_mv | AT jianghui machinelearningfundamentalsaconciseintroduction |