Data-driven computational neuroscience: machine learning and statistical models
Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscien...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2021
|
Links: | https://doi.org/10.1017/9781108642989 |
Zusammenfassung: | Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered. |
Umfang: | 1 Online-Ressource (xviii, 689 Seiten) |
ISBN: | 9781108642989 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108642989 | ||
003 | UkCbUP | ||
005 | 20201113222612.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 190116s2021||||enk o ||1 0|eng|d | ||
020 | |a 9781108642989 | ||
100 | 1 | |a Bielza, Concha | |
245 | 1 | 0 | |a Data-driven computational neuroscience |b machine learning and statistical models |c Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2021 | |
300 | |a 1 Online-Ressource (xviii, 689 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered. | ||
700 | 1 | |a Larrañaga, Pedro |d 1958- | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108493703 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108642989 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108642989 |
---|---|
_version_ | 1825574046877614080 |
adam_text | |
any_adam_object | |
author | Bielza, Concha |
author2 | Larrañaga, Pedro 1958- |
author2_role | |
author2_variant | p l pl |
author_facet | Bielza, Concha Larrañaga, Pedro 1958- |
author_role | |
author_sort | Bielza, Concha |
author_variant | c b cb |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02033nam a2200253 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108642989</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20201113222612.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">190116s2021||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108642989</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bielza, Concha</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-driven computational neuroscience</subfield><subfield code="b">machine learning and statistical models</subfield><subfield code="c">Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 689 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Larrañaga, Pedro</subfield><subfield code="d">1958-</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108493703</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108642989</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108642989 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:01Z |
institution | BVB |
isbn | 9781108642989 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 689 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Bielza, Concha Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid Cambridge Cambridge University Press 2021 1 Online-Ressource (xviii, 689 Seiten) txt c cr Data-driven computational neuroscience facilitates the transformation of data into insights into the structure and functions of the brain. This introduction for researchers and graduate students is the first in-depth, comprehensive treatment of statistical and machine learning methods for neuroscience. The methods are demonstrated through case studies of real problems to empower readers to build their own solutions. The book covers a wide variety of methods, including supervised classification with non-probabilistic models (nearest-neighbors, classification trees, rule induction, artificial neural networks and support vector machines) and probabilistic models (discriminant analysis, logistic regression and Bayesian network classifiers), meta-classifiers, multi-dimensional classifiers and feature subset selection methods. Other parts of the book are devoted to association discovery with probabilistic graphical models (Bayesian networks and Markov networks) and spatial statistics with point processes (complete spatial randomness and cluster, regular and Gibbs processes). Cellular, structural, functional, medical and behavioral neuroscience levels are considered. Larrañaga, Pedro 1958- Erscheint auch als Druck-Ausgabe 9781108493703 |
spellingShingle | Bielza, Concha Data-driven computational neuroscience machine learning and statistical models |
title | Data-driven computational neuroscience machine learning and statistical models |
title_auth | Data-driven computational neuroscience machine learning and statistical models |
title_exact_search | Data-driven computational neuroscience machine learning and statistical models |
title_full | Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
title_fullStr | Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
title_full_unstemmed | Data-driven computational neuroscience machine learning and statistical models Concha Bielza, Universidad Politécnica de Madrid, Pedro Larrañaga, Universidad Politécnica de Madrid |
title_short | Data-driven computational neuroscience |
title_sort | data driven computational neuroscience machine learning and statistical models |
title_sub | machine learning and statistical models |
work_keys_str_mv | AT bielzaconcha datadrivencomputationalneurosciencemachinelearningandstatisticalmodels AT larranagapedro datadrivencomputationalneurosciencemachinelearningandstatisticalmodels |