Algorithmic information dynamics: a computational approach to causality with applications to living systems
Biological systems are extensively studied as interactions forming complex networks. Reconstructing causal knowledge from, and principles of, these networks from noisy and incomplete data is a challenge in the field of systems biology. Based on an online course hosted by the Santa Fe Institute Compl...
Gespeichert in:
Beteilige Person: | |
---|---|
Weitere beteiligte Personen: | , |
Format: | E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Links: | https://doi.org/10.1017/9781108596619 |
Zusammenfassung: | Biological systems are extensively studied as interactions forming complex networks. Reconstructing causal knowledge from, and principles of, these networks from noisy and incomplete data is a challenge in the field of systems biology. Based on an online course hosted by the Santa Fe Institute Complexity Explorer, this book introduces the field of Algorithmic Information Dynamics, a model-driven approach to the study and manipulation of dynamical systems . It draws tools from network and systems biology as well as information theory, complexity science and dynamical systems to study natural and artificial phenomena in software space. It consists of a theoretical and methodological framework to guide an exploration and generate computable candidate models able to explain complex phenomena in particular adaptable adaptive systems, making the book valuable for graduate students and researchers in a wide number of fields in science from physics to cell biology to cognitive sciences. |
Umfang: | 1 Online-Ressource (xi, 331 Seiten) |
ISBN: | 9781108596619 |
Internformat
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-20-CTM-CR9781108596619 | ||
003 | UkCbUP | ||
005 | 20230511022016.0 | ||
006 | m|||||o||d|||||||| | ||
007 | cr|||||||||||| | ||
008 | 180511s2023||||enk o ||1 0|eng|d | ||
020 | |a 9781108596619 | ||
100 | 1 | |a Zenil, Hector | |
245 | 1 | 0 | |a Algorithmic information dynamics |b a computational approach to causality with applications to living systems |c Hector Zenil, Narsis A. Kiani, Jesper Tegnér |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xi, 331 Seiten) | ||
336 | |b txt | ||
337 | |b c | ||
338 | |b cr | ||
520 | |a Biological systems are extensively studied as interactions forming complex networks. Reconstructing causal knowledge from, and principles of, these networks from noisy and incomplete data is a challenge in the field of systems biology. Based on an online course hosted by the Santa Fe Institute Complexity Explorer, this book introduces the field of Algorithmic Information Dynamics, a model-driven approach to the study and manipulation of dynamical systems . It draws tools from network and systems biology as well as information theory, complexity science and dynamical systems to study natural and artificial phenomena in software space. It consists of a theoretical and methodological framework to guide an exploration and generate computable candidate models able to explain complex phenomena in particular adaptable adaptive systems, making the book valuable for graduate students and researchers in a wide number of fields in science from physics to cell biology to cognitive sciences. | ||
700 | 1 | |a Kiani, Narsis A. | |
700 | 1 | |a Tegnér, Jesper N. | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781108497664 |
966 | 4 | 0 | |l DE-91 |p ZDB-20-CTM |q TUM_PDA_CTM |u https://doi.org/10.1017/9781108596619 |3 Volltext |
912 | |a ZDB-20-CTM | ||
912 | |a ZDB-20-CTM | ||
049 | |a DE-91 |
Datensatz im Suchindex
DE-BY-TUM_katkey | ZDB-20-CTM-CR9781108596619 |
---|---|
_version_ | 1825574046064967683 |
adam_text | |
any_adam_object | |
author | Zenil, Hector |
author2 | Kiani, Narsis A. Tegnér, Jesper N. |
author2_role | |
author2_variant | n a k na nak j n t jn jnt |
author_facet | Zenil, Hector Kiani, Narsis A. Tegnér, Jesper N. |
author_role | |
author_sort | Zenil, Hector |
author_variant | h z hz |
building | Verbundindex |
bvnumber | localTUM |
collection | ZDB-20-CTM |
format | eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01839nam a2200265 i 4500</leader><controlfield tag="001">ZDB-20-CTM-CR9781108596619</controlfield><controlfield tag="003">UkCbUP</controlfield><controlfield tag="005">20230511022016.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">180511s2023||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108596619</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zenil, Hector</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algorithmic information dynamics</subfield><subfield code="b">a computational approach to causality with applications to living systems</subfield><subfield code="c">Hector Zenil, Narsis A. Kiani, Jesper Tegnér</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 331 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biological systems are extensively studied as interactions forming complex networks. Reconstructing causal knowledge from, and principles of, these networks from noisy and incomplete data is a challenge in the field of systems biology. Based on an online course hosted by the Santa Fe Institute Complexity Explorer, this book introduces the field of Algorithmic Information Dynamics, a model-driven approach to the study and manipulation of dynamical systems . It draws tools from network and systems biology as well as information theory, complexity science and dynamical systems to study natural and artificial phenomena in software space. It consists of a theoretical and methodological framework to guide an exploration and generate computable candidate models able to explain complex phenomena in particular adaptable adaptive systems, making the book valuable for graduate students and researchers in a wide number of fields in science from physics to cell biology to cognitive sciences.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiani, Narsis A.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tegnér, Jesper N.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781108497664</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CTM</subfield><subfield code="q">TUM_PDA_CTM</subfield><subfield code="u">https://doi.org/10.1017/9781108596619</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CTM</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield></record></collection> |
id | ZDB-20-CTM-CR9781108596619 |
illustrated | Not Illustrated |
indexdate | 2025-03-03T11:58:00Z |
institution | BVB |
isbn | 9781108596619 |
language | English |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xi, 331 Seiten) |
psigel | ZDB-20-CTM TUM_PDA_CTM ZDB-20-CTM |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Zenil, Hector Algorithmic information dynamics a computational approach to causality with applications to living systems Hector Zenil, Narsis A. Kiani, Jesper Tegnér Cambridge Cambridge University Press 2023 1 Online-Ressource (xi, 331 Seiten) txt c cr Biological systems are extensively studied as interactions forming complex networks. Reconstructing causal knowledge from, and principles of, these networks from noisy and incomplete data is a challenge in the field of systems biology. Based on an online course hosted by the Santa Fe Institute Complexity Explorer, this book introduces the field of Algorithmic Information Dynamics, a model-driven approach to the study and manipulation of dynamical systems . It draws tools from network and systems biology as well as information theory, complexity science and dynamical systems to study natural and artificial phenomena in software space. It consists of a theoretical and methodological framework to guide an exploration and generate computable candidate models able to explain complex phenomena in particular adaptable adaptive systems, making the book valuable for graduate students and researchers in a wide number of fields in science from physics to cell biology to cognitive sciences. Kiani, Narsis A. Tegnér, Jesper N. Erscheint auch als Druck-Ausgabe 9781108497664 |
spellingShingle | Zenil, Hector Algorithmic information dynamics a computational approach to causality with applications to living systems |
title | Algorithmic information dynamics a computational approach to causality with applications to living systems |
title_auth | Algorithmic information dynamics a computational approach to causality with applications to living systems |
title_exact_search | Algorithmic information dynamics a computational approach to causality with applications to living systems |
title_full | Algorithmic information dynamics a computational approach to causality with applications to living systems Hector Zenil, Narsis A. Kiani, Jesper Tegnér |
title_fullStr | Algorithmic information dynamics a computational approach to causality with applications to living systems Hector Zenil, Narsis A. Kiani, Jesper Tegnér |
title_full_unstemmed | Algorithmic information dynamics a computational approach to causality with applications to living systems Hector Zenil, Narsis A. Kiani, Jesper Tegnér |
title_short | Algorithmic information dynamics |
title_sort | algorithmic information dynamics a computational approach to causality with applications to living systems |
title_sub | a computational approach to causality with applications to living systems |
work_keys_str_mv | AT zenilhector algorithmicinformationdynamicsacomputationalapproachtocausalitywithapplicationstolivingsystems AT kianinarsisa algorithmicinformationdynamicsacomputationalapproachtocausalitywithapplicationstolivingsystems AT tegnerjespern algorithmicinformationdynamicsacomputationalapproachtocausalitywithapplicationstolivingsystems |